GATE 2013

Graduate Aptitude Test in Engineering

Information Brochure

Organizing Institute
Indian Institute of Technology Bombay
1 Table of Contents
1 Introduction .. 4
 1.1 Financial Assistance .. 4
 1.2 Administration .. 4
2 What’s New in GATE 2013? .. 6
 2.1 Other Important points about GATE 2013 ... 6
 2.2 Important Dates related to GATE 2013 .. 7
3 Pre Exam Related Information ... 8
 3.1 Eligibility for GATE ... 9
 3.2 GATE Papers ... 11
 3.3 Examination Schedule ... 12
 3.4 State-wise Exam Cities ... 13
 3.5 How to Apply .. 16
 3.5.1 GATE Online Applicant Interface .. 16
 3.5.2 Filling in Application Online ... 17
 3.5.3 Application Fee Payment Options ... 19
 3.5.4 Mailing Documents to GATE Office ... 20
 3.5.5 Photograph and Signature Requirements .. 22
 3.6 Admit Card ... 26
4 Examination Related Information ... 27
 4.1 Structure of GATE 2013 ... 27
 4.1.1 General Aptitude Questions ... 27
 4.1.2 XE Paper ... 28
 4.1.3 XL Paper ... 28
 4.2 Duration and Exam Type .. 28
 4.3 Pattern of Question Papers and Marking Scheme .. 29
 4.3.1 Pattern of Question Papers ... 29
4.4 Marking Scheme .. 31
 4.4.1 General Aptitude (GA) Questions .. 31
 4.4.2 Question papers other than GG, XE and XL .. 31
 4.4.3 GG (Geology and Geophysics) Paper .. 32
 4.4.4 XE Paper (Engineering Sciences) .. 32
 4.4.5 XL Paper (Life Sciences) .. 32

4.5 GATE Syllabi .. 33
 4.5.1 General Aptitude (GA): Common to All Papers Engineering 33
 4.5.2 Aerospace Engineering (AE) .. 35
 4.5.3 Agricultural Engineering (AG) .. 37
 4.5.4 Architecture and Planning (AR) .. 39
 4.5.5 Biotechnology (BT) .. 41
 4.5.6 Civil Engineering (CE) ... 43
 4.5.7 Chemical Engineering (CH) .. 45
 4.5.8 Computer Science and Information Technology (CS) .. 47
 4.5.9 Chemistry (CY) .. 49
 4.5.10 Electronics and Communication Engineering (EC) .. 51
 4.5.11 Electrical Engineering (EE) ... 53
 4.5.12 Geology and Geophysics (GG) ... 55
 4.5.13 Instrumentation Engineering (IN) ... 58
 4.5.14 Mathematics (MA) .. 60
 4.5.15 Mechanical Engineering (ME) .. 62
 4.5.16 Mining Engineering (MN) ... 64
 4.5.17 Metallurgical Engineering (MT) .. 66
 4.5.18 Physics (PH) ... 68
 4.5.19 Production and Industrial Engineering (PI) .. 69
 4.5.20 Textile Engineering and Fibre Science (TF) .. 72
 4.5.21 Engineering Sciences (XE) ... 74
1 Introduction

Graduate Aptitude Test in Engineering (GATE) is an all India examination that primarily tests a comprehensive understanding of various undergraduate subjects in Engineering and Technology. The GATE score of a candidate reflects a relative performance level in a particular paper in the exam across several years. The score is used for admissions to post-graduate engineering programmes (eg. M.E., M.Tech, direct Ph.D.) in Indian higher education institutes with financial assistance provided by MHRD and other Government agencies. The score may also be used by Public sector units for employment screening purposes.

1.1 Financial Assistance

A valid GATE score is essential for obtaining a financial assistance during Masters programmes and direct Doctoral programmes in Engineering/Technology/Architecture, and Doctoral programs in relevant branches of Science in an Institution supported by the MHRD or other Government assistantships. As per the directives of the MHRD, the following procedure is to be adopted for admission to the postgraduate programmes (Master and Doctoral) with MHRD scholarship/assistantship. The performance of the candidate in GATE will be considered for admission. If the candidate is to be selected through interview for postgraduate programmes, minimum 70% weightage is to be given to the performance in GATE. The remaining weightage (30% maximum) may be given to the candidate’s academic record or performance in interview. The admitting institution could however prescribe minimum passing percentage of marks in the interview. Some colleges/institutes specify GATE qualification as the mandatory requirement even for admission without MHRD scholarship/assistantship.

To avail the financial assistance (scholarship), the candidate must first secure admission to a programme in these Institutes, by a procedure that could be different for each institute. Qualification in GATE is also a minimum requirement to apply for various fellowships awarded by many Government organizations. Candidates are advised to seek details of admission procedures and availability of MHRD scholarship/assistantship from the concerned admitting institution. The criteria for postgraduate admission with scholarship/assistantship are different for different admitting institutions. The management of the postgraduate scholarship/assistantship is also the responsibility of the admitting institution. Similarly, reservation of seats under different categories is as per the policies and norms prevailing at the admitting institution and Government of India rules. GATE offices will not entertain any enquiry about admission, reservation of seats or award of scholarship/assistantship.

Nevertheless, candidates with Master’s degree in Engineering/Technology/Architecture may seek admission to relevant Doctoral programmes with scholarship/assistantship without appearing in the GATE examination.

1.2 Administration

GATE is administered and conducted jointly by the Indian Institute of Science and seven Indian Institutes of Technology on behalf of the National Coordination Board (NCB) – GATE, Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India.
The GATE Committee, which comprises of representatives from the administering institutes, is the sole authority for regulating the examination and declaring the results.

GATE is conducted through the constitution of eight zones. The zones and the corresponding administrative institutes are:

Zone-1: Indian Institute of Science, Bangalore
Zone-2: Indian Institute of Technology Bombay
Zone-3: Indian Institute of Technology Delhi
Zone-4: Indian Institute of Technology Guwahati
Zone-5: Indian Institute of Technology Kanpur
Zone-6: Indian Institute of Technology Kharagpur
Zone-7: Indian Institute of Technology Madras
Zone-8: Indian Institute of Technology Roorkee

The overall coordination and responsibility of conducting GATE 2013 lies with Indian Institute of Technology Bombay, and is designated as the Organizing Institute for GATE 2013.

Organization of the Brochure

The information in this brochure is mainly categorized into Pre-Exam (Eligibility, Application submission, Exam Centers etc.), Examination (Syllabus, Pattern, Scoring, Model Question Papers etc.) & Post-Exam (Answers, Results, Score Card etc.) sections.
2 What’s New in GATE 2013?

1. 15 subject papers will be conducted by an ONLINE computer based test: AE, AG, AR, BT, CE, CH, CY, GG, MA, MN, MT, PH, TF, XE, and XL.

2. Female candidates are exempted from paying the application fee, as required by MHRD, Govt. of India.

3. All candidate related information and grievance redressal will be available in a single GATE Online Applicant Interface.

4. Soft copies of photograph and signature must be uploaded during online application (This is in addition to sending recent photograph of applicant with signed application).

5. A new formula will be used for calculating the GATE score.

6. Biometric information (Photograph and fingerprint) maybe captured on the day of the examination for randomly selected candidates.

2.1 Other Important points about GATE 2013

1 Application Process: For GATE 2013, candidates need to register and fill the application ONLINE only by accessing the zonal GATE websites of IISc and seven IITs. The application process is complete only when a print out of the filled ONLINE application with the candidate’s signature and a good quality photo affixed in the appropriate place is received by the respective GATE office along with necessary documents, if any, on or before 8 October 2012. Please note that application forms are NOT available for sale anywhere.

2 Downloadable Admit Card: Admit cards are NOT sent by mail anymore. Admit cards can only be downloaded from the zonal GATE websites from 5th December 2012 onwards. Bring the admit card to the test center along with at least one original (not photocopied / scanned copy) and valid (not expired) photo identification.

3 Use of black ink ballpoint pen for Offline exams: Candidates should use only black ink ballpoint pen for darkening of the bubbles in the OMR sheet. Since bubbles darkened by the black ink ballpoint pen cannot be erased, candidates should darken the bubbles in the OMR sheet very carefully.

4 Numerical answer type questions in ONLINE papers: In the ONLINE papers, the question paper will consist of questions of multiple-choice type and questions of numerical answer type. For multiple choice type questions, each question will have four choices for the answer. For numerical answer type questions, each question will have a number as the answer. Each online paper will have 15 or more marks worth of questions requiring numerical answers where possible.

5 Pre-final year students: Pre-final year students are NOT eligible to write GATE 2013. For details, refer to Section 4.1 eligibility for GATE examination.
2.2 Important Dates related to GATE 2013

<table>
<thead>
<tr>
<th>Event</th>
<th>Day</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATE Online Applicant Interface (website) Opens</td>
<td>Saturday</td>
<td>1 September 2012 (00:00 Hrs)</td>
</tr>
<tr>
<td>Last date for Submission of Online Application (website closure)</td>
<td>Sunday</td>
<td>30 September 2012 (23:00 Hrs)</td>
</tr>
<tr>
<td>Last date for the receipt of printed version of ONLINE Application at the respective zonal GATE Office</td>
<td>Monday</td>
<td>8 October 2012</td>
</tr>
<tr>
<td>Last date for request of change of city</td>
<td>Tuesday</td>
<td>20 November 2012</td>
</tr>
<tr>
<td>Availability of admit card on Online Application Interface</td>
<td>Wednesday</td>
<td>5 December, 2012</td>
</tr>
<tr>
<td>GATE 2013 Online Examination for Papers: AR, CE, GG, MA, MT, PH and TF*</td>
<td>Sunday</td>
<td>20 January 2013 (09:00 Hrs to 12:00 Hrs)</td>
</tr>
<tr>
<td>GATE 2013 Online Examination Papers: AE, AG, BT, CH, CY, MN, XE and XL*</td>
<td>Sunday</td>
<td>20 January 2013 (14:00 Hrs to 17:00 Hrs)</td>
</tr>
<tr>
<td>GATE 2013 Offline Examination Papers: CS, ME and PI*</td>
<td>Sunday</td>
<td>10 February 2013 (09:00 Hrs to 12:00 Hrs)</td>
</tr>
<tr>
<td>GATE 2013 Offline Examination Papers: EC, EE and IN*</td>
<td>Sunday</td>
<td>10 February 2013 (14:00 Hrs to 17:00 Hrs)</td>
</tr>
<tr>
<td>Announcement of results on Online Applicant Interface</td>
<td>Friday</td>
<td>15 March 2013 (10:00 Hrs)</td>
</tr>
</tbody>
</table>

* Please see Section 3.2 for a complete list of GATE papers and their codes.
3 Pre Exam Related Information

Note to the Candidates: Before you start the application process, you must:

1. Ensure you are eligible for GATE 2013 (See Section 3.1)
2. Determine the GATE paper you wish to appear for (You can appear in only one paper for GATE 2013).
3. Choose at least two cities from the table of Cities given this Brochure that are convenient for you to write the exam. (See Section 3.4)

In addition, please note that:

1. The Application for appearing in GATE 2013 must be made online only.
2. Your choice of exam paper will determine the examination type (online/offline), date, and choice of available cities.
3.1 Eligibility for GATE

Only the following categories of candidates are eligible to appear for GATE 2013. Necessary supporting documents must be submitted ONLINE or by post during the submission of the application form for the exam. Please read this carefully and make sure that your year of qualification is not later that what is specified below.

<table>
<thead>
<tr>
<th>Qualifying Degree (Short)</th>
<th>Qualifying Degree/Examination (Descriptive)</th>
<th>Description of Eligible Candidates</th>
<th>Year of qualification cannot be later than</th>
<th>Copies of Certificates to be submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E./B.Tech/B.Arch</td>
<td>Bachelor’s degree in Engineering/Technology/Architecture (4 years after 10+2/Post B.Sc./Post-Diploma)</td>
<td>4th year or Completed</td>
<td>2013</td>
<td>Degree Certificate / Provisional Certificate / Course Completion Certificate</td>
</tr>
<tr>
<td>MSc./M.A./MCA equivalent</td>
<td>Master’s degree in any branch of Science / Mathematics / Statistics / Computer Applications or equivalent</td>
<td>Final year or Completed</td>
<td>2013</td>
<td>Degree Certificate / Provisional Certificate / Course Completion Certificate (pertaining to Masters degree)</td>
</tr>
<tr>
<td>Int. M.E./M.Tech or DD (after 10+2 or Diploma)</td>
<td>Integrated Master’s degree programs of Dual Degree programs in Engineering / Technology (Five year programme)</td>
<td>4th/5th Year or Completed</td>
<td>2014</td>
<td>Degree Certificate / Provisional Certificate / Course Completion Certificate</td>
</tr>
<tr>
<td>Int. M.E/M.Tech (Post BSc)</td>
<td>Post-BSc Integrated Master’s degree programs in Engineering / Technology (Four year programme)</td>
<td>2nd/3rd/4th year or Completed</td>
<td>2015</td>
<td>Degree Certificate / Provisional Certificate / Course Completion Certificate</td>
</tr>
<tr>
<td>Professional Society Examinations (equivalent to B.E/B.Tech/B.Arch)</td>
<td>B.E/B.Tech equivalent examinations, of Professional Societies, recognized by MHRD/UPSC/AICTE (e.g. AMIE by Institution of Engineers-India, AMICE by the Institute of Civil Engineers-India)</td>
<td>Completed section A or equivalent of such professional courses</td>
<td>NA</td>
<td>Professional Certificate/ Provisional Certificate/ Course Completion/ Membership Certificate issued by the Society or Institute</td>
</tr>
</tbody>
</table>

Certificate from Principal

Candidates who have to submit a certificate from their Principal, as determined from the above table, have to obtain a signature from their principal on a certificate that will be printed on the application PDF file provided after completion of online application submission.

Candidates with backlogs

Candidates who have appeared in the final semester/year exam in 2012, but with a backlog (arrears/failed subjects) in any of the papers in their qualifying degree should submit

1. A copy of any one of the marks sheets of the final year, OR
2. A letter from the principal indicating that the student has a backlog from an earlier semester/year to be cleared, and therefore cannot produce a course completion certificate now. This certificate will also be present in the last portion of the PDF application form provided to you after you submit application online.
3.2 GATE Papers

GATE 2013 will be conducted in the following subjects (also referred to as “papers”). Candidates must familiarize with the paper code for the paper of their choice, as this knowledge will be required at the time of application form submission and appearing for the examination.

<table>
<thead>
<tr>
<th>GATE Paper</th>
<th>Code</th>
<th>GATE Paper</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering</td>
<td>AE</td>
<td>Instrumentation Engineering</td>
<td>IN</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>AG</td>
<td>Mathematics</td>
<td>MA</td>
</tr>
<tr>
<td>Architecture and Planning</td>
<td>AR</td>
<td>Mechanical Engineering</td>
<td>ME</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>BT</td>
<td>Mining Engineering</td>
<td>MN</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>CE</td>
<td>Metallurgical Engineering</td>
<td>MT</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>CH</td>
<td>Physics</td>
<td>PH</td>
</tr>
<tr>
<td>Computer Science and Information Technology</td>
<td>CS</td>
<td>Production and Industrial Engineering</td>
<td>PI</td>
</tr>
<tr>
<td>Chemistry</td>
<td>CY</td>
<td>Textile Engineering and Fibre Science</td>
<td>TF</td>
</tr>
<tr>
<td>Electronics and Communication Engineering</td>
<td>EC</td>
<td>Engineering Sciences</td>
<td>XE*</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>EE</td>
<td>Life Sciences</td>
<td>XL**</td>
</tr>
<tr>
<td>Geology and Geophysics</td>
<td>GG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XE Paper Sections

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

XE Paper Sections

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

XL Paper Sections

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

*XE Paper Sections Code **XL Paper Sections Code*

Engineering Mathematics (Compulsory) Chemistry (Compulsory) H
Fluid Mechanics Biochemistry I
Materials Science Botany J
Solid Mechanics Microbiology K
Thermodynamics Zoology L
Polymer Science and Engineering Food Technology M
Food Technology

11
3.3 Examination Schedule

<table>
<thead>
<tr>
<th>GATE Paper Codes</th>
<th>Examination Time</th>
<th>Examination Date (Day)</th>
<th>Examination Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR, CE, GG, MA, MT, PH, and TF</td>
<td>09:00 hrs–12:00 hrs</td>
<td>20 January 2013 (Sunday)</td>
<td>ONLINE</td>
</tr>
<tr>
<td>AE, AG, BT, CH, CY, MN, XE and XL</td>
<td>14:00 hrs–17:00 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS, ME and PI</td>
<td>09:00 hrs–12:00 hrs</td>
<td>10 February 2013 (Sunday)</td>
<td>OFFLINE</td>
</tr>
<tr>
<td>EC, EE and IN</td>
<td>14:00 hrs–17:00 hrs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONLINE Examination: A computer based test (CBT) where the candidate will use a computer mouse to choose a correct answer or enter a numerical answer via a virtual keypad.

OFFLINE Examination: A paper based examination where the candidate will mark the correct answer out of four options in an Optical Response Sheet (ORS) by darkening the appropriate bubble with a pen.
3.4 State-wise Exam Cities

The centers for online exam papers are **different** from the centers for offline exam papers. Please consult the table below. First determine if the paper of your choice is to be conducted online or offline, and check for a city in the state of your choice. Also seen in the table is the Zonal Administration Institute Office (Either of the IITs or IISc). This Zonal office will be your point of contact for any enquiries regarding your exam center.¹

<table>
<thead>
<tr>
<th>State</th>
<th>Exam Mode</th>
<th>City</th>
<th>Zonal GATE Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Online</td>
<td>Ananthapur, Hyderab, Kurnool, Secunderabad</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kakinada, Vijayawada, Visakhapatnam</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Bapatla, Guntur, Kadapa, Nellore, Tirupati, Warangal</td>
<td>IITM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ananthapur, Hyderab, Kurnool, Mahabubnagar, Secunderabad</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhimavaram, Eluru, Kakinada, Machilipatnam, Rajahmundry, Srikakulam</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tadepalligudem, Vijayawada, Visakhapatnm</td>
<td>IITM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bapatla, Chittoor, Gudur, Guntur, Kadapa, Karimnagar, Khammam, Kothagudem, Manchiryal, Nalgonda, Nellore, Ongole, Tenali, Tirupati, Warangal</td>
<td></td>
</tr>
<tr>
<td>Arunachal Pradesh</td>
<td>Online</td>
<td>—</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Itanagar</td>
<td>IITG</td>
</tr>
<tr>
<td>Assam</td>
<td>Online</td>
<td>Guwahati, Jorhat, Silchar, Tezpur</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Guwahati, Jorhat, Silchar, Tezpur</td>
<td>IITG</td>
</tr>
<tr>
<td>Bihar</td>
<td>Online</td>
<td>Patna</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Bhagalpur, Patna</td>
<td>IITG</td>
</tr>
<tr>
<td>Chattisgarh</td>
<td>Online</td>
<td>Bilaspur, Raipur</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Bilaspur, Raipur</td>
<td>IITKGP</td>
</tr>
<tr>
<td>Delhi</td>
<td>Online</td>
<td>Delhi</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Delhi Central, Delhi East, Delhi North, Delhi South, Delhi West</td>
<td>IITD</td>
</tr>
<tr>
<td>Goa</td>
<td>Online</td>
<td>—</td>
<td>IITB</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Goa</td>
<td>IITB</td>
</tr>
<tr>
<td>Gujarat</td>
<td>Online</td>
<td>Ahmedabad, Rajkot, Surat, Vadodara</td>
<td>IITB</td>
</tr>
</tbody>
</table>

¹ While we will make every effort to allocate you to a center in the city of your choice, please note that centers may be added or removed at the discretion of the GATE committee. In case a center in the city of your choice is not available, we will allot a center that is geographically closest to the city of your choice.
<table>
<thead>
<tr>
<th>State</th>
<th>Exam Mode</th>
<th>City</th>
<th>Zonal GATE Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>Offline</td>
<td>Ahmedabad, Mahesana, Rajkot, Surat, Vadodara</td>
<td>IITB</td>
</tr>
<tr>
<td></td>
<td>Online</td>
<td>Faridabad, Gurgaon</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hisar, Kurukshetra, Rohtak</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Faridabad, Gurgaon</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hisar, Kurukshetra, Rohtak, Yamunanagar</td>
<td>IITR</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>Online</td>
<td>Hamirpur, Shimla</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Hamirpur, Shimla</td>
<td>IITR</td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td>Online</td>
<td>Jammu</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Jammu</td>
<td>IITR</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>Online</td>
<td>Dhanbad</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jamshedpur,Ranchi</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Dhanbad</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jamshedpur,Ranchi</td>
<td>IITKGP</td>
</tr>
<tr>
<td>Karnataka</td>
<td>Online</td>
<td>Belgaum, Bengaluru, Davangere, Hassan, Hubli, Mangalore, Manipal, Mysore, Surathkal</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gulbarga</td>
<td>IITB</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Bagalkot, Belgaum, Bengaluru, Davangere, Hassan, Hubli, Mangalore, Manipal, Mysore, Surathkal</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gulbarga</td>
<td>IITB</td>
</tr>
<tr>
<td>Kerala</td>
<td>Online</td>
<td>Kanjirappally, Kannur, Kollam, Kottayam,Kozhikode, Palakkad, Thrissur</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ernakulam, Thiruvananthapuram</td>
<td>IITM</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Alappuzha (Aleppy), Chengannur, Kanjirappally, Kannur, Kollam, Kottayam, Kozhikode, Palakkad, Thrissur</td>
<td>IISc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ernakulam, Thiruvananthapuram,</td>
<td>IITM</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>Online</td>
<td>Indore, Ujjain</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhopal, Gwalior, Jabalpur</td>
<td>IITK</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Indore, Ujjain</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhopal,Gwalior,Jabalpur, Saugar (Sagar, MP)</td>
<td>IITK</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>Online</td>
<td>Ahmednagar, Amravati, Aurangabad, Jalgaon, Kolhapur, Mumbai (Central Line), Mumbai (Western Line), Nagpur, Nanded, Nashik, Navi Mumbai, Pune (City), Pune (Pimpri Chinchwad), Sangli, Solapur, Thane</td>
<td>IITB</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Ahmednagar, Akola, Amravati, Aurangabad, Bhusawal, Gondia, Jalgaon, Kolhapur, Latur, Lonavala, Loni, Mumbai (Central Line), Mumbai (Western Line), Nagpur, Nanded, Nashik, Navi Mumbai, Pandharpur, Pune (City), Pune</td>
<td>IITB</td>
</tr>
<tr>
<td>State</td>
<td>Exam Mode</td>
<td>City</td>
<td>Zonal GATE Office</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Manipur</td>
<td>Online</td>
<td>(Pimpri Chinchwad), Sangli, Satara, Shegaon, Solapur, Thane, Wardha</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td></td>
<td>IITG</td>
</tr>
<tr>
<td>Orissa</td>
<td>Online</td>
<td>Bhubaneswar, Cuttack, Rourkela, Sambalpur</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Balasore, Berhampur, Bhubaneswar, Cuttack, Rourkela, Sambalpur</td>
<td>IITKGP</td>
</tr>
<tr>
<td>Puducherry</td>
<td>Online</td>
<td>Puducherry</td>
<td>IITM</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Puducherry</td>
<td>IITM</td>
</tr>
<tr>
<td>Punjab</td>
<td>Online</td>
<td>Amritsar, Bathinda, Chandigarh, Jalandhar, Patiala</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Amritsar, Bathinda, Chandigarh, Jalandhar, Ludhiana, Patiala</td>
<td>IITR</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>Online</td>
<td>Ajmer, Bikaner, Jaipur, Jodhpur, Kota, Udaipur</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Ajmer, Alwar, Bikaner, Jaipur, Jodhpur, Kota, Sikar, Udaipur</td>
<td>IITD</td>
</tr>
<tr>
<td>Sikkim</td>
<td>Online</td>
<td>—</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Gangtok</td>
<td>IITG</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>Online</td>
<td>Chennai, Chidambaran, Coimbatore, Madurai, Salem, Thanjavur, Tiruchirapalli, Tirunelveli, Vellore</td>
<td>IITM</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Chennai North, Chennai South, Chidambaran, Coimbatore, Dindigul, Madurai, Nagercoil, Salem, Thanjavur, Tiruchirapalli, Tirunelveli, Vellore</td>
<td>IITM</td>
</tr>
<tr>
<td>Tripura</td>
<td>Online</td>
<td>Agartala</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Agartala</td>
<td>IITG</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>Online</td>
<td>Agra, Aligarh, Allahabad, Bareilly, Kanpur, Lucknow, Varanasi</td>
<td>IITK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghaziabad, Meerut, Muzaffarnagar, Noida</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Mathura</td>
<td>IITD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agra, Aligarh, Allahabad, Bareilly, Gorakhpur, Jhansi, Kanpur, Lucknow, Sultanpur, Varanasi</td>
<td>IITK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bijnour, Ghaziabad, Meerut, Muzaffarnagar, Noida</td>
<td>IITR</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>Online</td>
<td>Dehradun, Haldwani, Roorkee</td>
<td>IITR</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Dehradun, Haldwani, Haridwar, Roorkee, Srinagar</td>
<td>IITR</td>
</tr>
<tr>
<td>West Bengal</td>
<td>Online</td>
<td>Asansol, Durgapur, Kalyani, Siliguri</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kharagpur, Greater Kolkata (North), Greater Kolkata (South)</td>
<td>IITKGP</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Asansol, Durgapur, Kalyani, Siliguri</td>
<td>IITG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kharagpur, Kolkata</td>
<td>IITKGP</td>
</tr>
</tbody>
</table>
3.5 How to Apply

All candidates have to apply ONLINE. Details of the application fee and the steps in the application process are given below. The application fee is non-refundable.

<table>
<thead>
<tr>
<th>Category</th>
<th>Application Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>General/OBC-NC (Male Candidates)</td>
<td>₹1200/-</td>
</tr>
<tr>
<td>SC / ST / PD* (Male Candidates)</td>
<td>₹600/-</td>
</tr>
<tr>
<td>Female Candidates</td>
<td>₹0 (Exempted)</td>
</tr>
</tbody>
</table>

* PD: Person with a Physical Disability

3.5.1 GATE Online Applicant Interface

An online interface is provided for most of your interaction with the GATE office. This interface can be accessed using url: http://gateapp.iitb.ac.in With this interface you can

1. Apply for the examination online
2. Upload photograph, signature, and supporting documents.
3. Make application fee payment through netbanking.
4. Check the status of your application form: Received, Under Scrutiny, Rejected after Scrutiny failed, Accepted after Successful Scrutiny, Admit Card Ready for Download, etc.
5. Contact the GATE office in case of any queries/problems (Grievance Redressal).
6. Download Admit Card.
7. View your answers, marks and GATE score.

The login to this interface is through your chosen email address and a password. Keep this information safe and do not disclose the email id and password to anyone.
3.5.2 Filling in Application Online

1. GATE Online Application Interface (website) can be accessed from the GATE website.

2. You must first register yourself, by providing a valid email address. Choose this carefully to be the one you check frequently, as all communications to you from the GATE offices will be sent to this address (DO NOT USE ANYBODY ELSE’S EMAIL ADDRESS. ONLY ONE PERSON CAN REGISTER WITH ONE EMAIL ADDRESS).

3. Upon registration, an email will be sent with a link and an one time password (OTP). You must click on the link and enter the password. You will be required to change the password after the first login. Choose a password that is not easily guessable (should not be like: your name, DOB, 12345, asdf, etc.), so as to ensure that the data you provide is not accessible to any person other than yourself.

4. Next you will see an application form to be filled in. Keep the following information ready:
 1. Personal information
 2. Communication Address (Important: PIN Code)
 3. Eligibility Degree Details (College address, PIN Code of College)
 4. GATE paper, Choice of GATE examination cities (See Section 3.2 and 3.4)
 5. High quality image of your photograph conforming to the requirements (see Section 3.5.5 for details on the quality of the photograph and signature)
 6. Good quality image of your signature (in .jpeg format) conforming to requirements similar to photograph
 7. Optional: PDF files of supporting documents (Eligibility & Category Certificates) (max file size: per file 0.5 MB See section 3.5.2.1). Please see Section 3.1 for the Eligibility Criteria and documents).
 8. Optional: Your Netbanking details to make the application fee payment (only for Male candidates).

5. Fill in the necessary data in the online application form following instructions given there. Upload the soft copies of photo and signature (mandatory).

6. Optional: You may upload pdf files of supporting documents conforming to the eligibility (except principal’s certificate) and category requirements given below in section Supporting Documents

7. You will have to select one of the payment options (details given in Section 3.5.3) while filling the online form.

8. The GATE Online Applicant Interface allows you to enter data, “Save” partially filled form, “Logout”, and resume filling in by logging in again.

9. Before you make the payment, you will be shown a “Preview” of your application, where you have to carefully check for any errors.

10. Once you submit the application with payment, no further changes to the application can be made by the candidate.
11. Candidates who have selected online payment option will follow the instructions given below for online net banking in payment section and complete payment process. Those who have selected challan payment option will directly proceed to the next step.

12. You will then see a link to “Print Application Form”. You have to download a PDF file from this link and print it. It will contain four pages as mentioned below

 1. Page 1: Instructions and Address slip where you need to send hard copy
 2. Page 2-3: Two copies of application form with bottom part showing certificate to be signed by principal (if need be)
 3. Page 4: Optional page for candidates who select “bank challan” mode of payment. This page will contain 3 copies of challan to be processed with bank

3.5.2.1 Supporting Documents

Applicants have an option to upload supporting documents online. Please make sure that the max file size permitted to upload per file is 0.5 MB. For scanning the documents please use the following setting

1. Resolution: 200 dpi
2. Color mode: 256 colors
3. File format: PDF or JPEG

3.5.2.1.1 Eligibility Documents

Eligibility criteria and necessary supporting documents can be found from the Eligibility table for GATE as given in Section 3.1.

3.5.2.1.2 SC/ST/PD Certificate

Only male applicants who claim to be in any of the category SC/ST/PD have to produce valid documentary evidence (details given in Section 8.1), to qualify for the reduced fee. Applicants need not provide any SC/ST certificate, as the fee is exempted, as required by MHRD, Govt. of India.

However, if any female applicant requests a scribe to assist writing the exam, a PD certificate has to be provided.

Candidates who claim to be in any of the above categories have to submit photocopies of valid documents along with the application for evidence. Sources of valid evidence are given in Appendix A.
3.5.3 Application Fee Payment Options

Non-refundable application fee is charged only for male candidates. Candidates are exempted from the payment of application fee, as required by MHRD, Govt. of India. All charges given below are in Indian Rupees.

<table>
<thead>
<tr>
<th>Candidate Category</th>
<th>Mode</th>
<th>Application Fee</th>
<th>Bank Charges</th>
<th>Total to be Paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male General/OBC-NC</td>
<td>Online Netbanking</td>
<td>1200</td>
<td>10</td>
<td>1210</td>
</tr>
<tr>
<td></td>
<td>Canara Bank Challan</td>
<td>1200</td>
<td>20</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>SBI Challan</td>
<td>1200</td>
<td>25</td>
<td>1225</td>
</tr>
<tr>
<td>Male SC/ST/PD</td>
<td>Online Netbanking</td>
<td>600</td>
<td>10</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Canara Bank Challan</td>
<td>600</td>
<td>20</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>SBI Challan</td>
<td>600</td>
<td>25</td>
<td>625</td>
</tr>
<tr>
<td>Female</td>
<td>No Application Fee, as required by MHRD, Govt. of India.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.3.1 Online Net banking Payment Details

1. From the GATE Online Application Interface, you will be redirected to a bank you choose.
2. You will have to login with your bank’s Net banking (or Internet Banking) user ID and password.
3. The fee amount and bank charges will be shown to you, and you have to confirm that the payment is for GATE 2013.
4. Once you confirm, you will be redirected back to the GATE Online Application Interface.
5. If you have some difficulty (due to internet connection or power failure), and you are not sure if you have made the payment, please login back to GATE Online Application Interface and check the status of the payment. You can also check the status in your bank.
6. In case the fee amount has been debited from your bank account but not reached GATE, then the money will be credited back to your account within three working days.
7. In such a case, you may initiate a fresh payment from the GATE Online Interface, even without waiting for the money to be credited back to your account, so that your application is submitted to GATE office on time. You may also switch to offline Challan payments if need be.

3.5.3.2 Offline Challan Payment Details

1. If you had chosen offline payment option while filling in the form, you will be provided with a copy of the challan in triplicate (PDF file) with your details filled in (see 13.C). You have to print it out on an A4 paper, and have to fill in a few more details such as date and signature.
2. You have to wait for at least 48 hours after generation of application pdf online and only then take filled challan to the bank for payment of fees.
3. You may take the challan to any Canara Bank or SBI and make application fees payment. You do not need to have an account in that branch.

4. The bank teller will verify the details printed on the challan with the data available at the bank and then accept the payment. Note that your payment will NOT be accepted if you go to bank earlier than 48 hrs as mentioned in 2 above. This is because it will take some time after application pdf generation online to reflect the data in respective bank’s system.

5. The bank will retain one copy and give you back the remaining copies: one of which you have to send along with the printed application form and the other is for your reference.

3.5.4 Mailing Documents to GATE Office

The printed application form along with the documents must be mailed by speed post to the Zonal office, as mentioned in the printed address slip that comes along with the PDF file of the application form. Before mailing, the following procedures need to be completed

3.5.4.1 Before Mailing

1. Out of the printed pages, keep one copy of application form (page 2) for your reference and process the other copy as follows

 1. Paste a color photograph of yourself in the space provided, and sign the application in the box provided. This photograph and signature should EXACTLY match the one in the photograph file uploaded electronically to the GATE Online Interface; your application is liable to be rejected otherwise.
 2. Do not pin, sign, or attest the photograph
 3. You must sign in the box provided
 4. In case principal’s certificate happens to be proof of your eligibility, Submit the whole page (without cutting it) to your College principal’s office. Bottom portion of the form contains the part that your college principal has to certify. Once you obtain principal’s signature and stamp this is ready to go in application packet to be sent.

2. If you had paid the application fee by challan, bank would have returned you stamped GATE copy of challan. Keep it ready to go in application packet to be sent.

3. You will also find half page of instruction and half page address slip. Cut this address slip, which contains the address of the Zonal office (along with application bar code), where the application form needs to be mailed.

4. Make sure you are ready with the following CHECK LIST:

 1. The signed application form (with photograph affixed) with, Principal’s certificate if that is proof of your eligibility to appear in GATE 2013.
 2. Other eligibility documents to appear for GATE 2013 (degree certificate) in case pdf files of these are NOT uploaded to online interface.
 3. Category certificate for claiming discounted application fee in case pdf files of these are NOT uploaded to online interface.
 4. PD certificate if you require a scribe assistance
5. GATE copy of **Challan duly stamped** by the bank after payment of fees (you need not submit challan in case of payment by net banking)

3.5.4.2 Mailing

1. Use A4 sized envelope and put application form along with other documents mentioned in the CHECK LIST above.

2. **Do not fold** the application form and **DO NOT STAPLE** or pin the documents.

3. **Do not fill address by hand**, as the address slip provided contains a barcode necessary for processing your application. Note that barcodes on these address slips are different for each candidate. **DO NOT** use someone else’s address slip for your application.

4. Secure the address slip firmly to the envelope using good glue or with additional transparent sticky tape (cello-tape)

5. Send the packet by **Speed Post (preferably)** or by Registered Post to the address mentioned. **The application packet should REACH the respective GATE offices on or before Monday, 8 October 2012.** Alternatively it can also be handed over personally to the respective Zonal GATE Office on or before Monday, 8th October 2012. (Note: Applications **reaching** respective offices later than 8th October 12 **may not be considered** even if they are post marked 8th October, 2012 or earlier)

6. If you had uploaded the supporting documents online, you should post only the application form page (with principal’s certification if applicable). There is no need to post the paper copies of other documents.

Current status of your application will be updated after receipt and scrutinizing of your application by respective GATE offices. This status can be checked anytime by logging onto your GATE Online Applicant Interface.
3.5.5 Photograph and Signature Requirements

The GATE 2013 Online Applicant Interface requires that copies of your photograph and signature be uploaded as an electronic file at the time of submitting your application. Uploading photographs or signatures that do not meet specifications can result in disqualification of the application without any refund of the fee.

3.5.5.1 Photograph Requirements

Please pay attention to upload good quality photographs. Poor quality of photographs submitted will lead to rejection of your GATE application, without any refund of the application fees. The GATE Score card will be printed with the photograph you submit.

1. The photograph must be in color and must be taken in a professional studio. Photographs taken using a Mobile phone and other self-composed portraits are NOT acceptable.

2. Photograph must be taken in a White or a very light background.

3. The photograph must have been taken after 1 June 2012.

4. Face should occupy about 50% of the area in the photograph, and with a full-face view looking into the camera directly.

5. The main features of the face must not be covered by hair of the head, any cloth or any shadow. Forehead, both eyes, nose, cheeks, lip, and chin should be clearly visible.

6. If you normally wear spectacles, glare on glasses is not acceptable in your photo. Glare can be avoided with a slight downward tilt of the glasses for the photo shoot.

7. You must not wear spectacles with dark or tinted glasses, only clear glasses are permitted.

8. Ask your photo studio to provide the image in a JPEG format and also on a standard 4.5 cm x 3.5cm print

9. Maximum pixel resolution for JPEG: 640×480 (0.3 Mega pixel) (Ask your studio to reduce it to this resolution if it is higher)

10. Minimum pixel resolution for JPEG: 320 x 240.

11. For your own benefit it may be prudent not to intentionally change your facial features or hair style as in the photograph until the day of the exam.
3.5.5.2 Sample Photographs

<table>
<thead>
<tr>
<th>Not Acceptable Photograph</th>
<th>Reason for Rejection</th>
<th>Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mobile phone; Distorted face</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue Background</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facial Area is less than 50% of total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not looking straight into Camera</td>
<td></td>
</tr>
</tbody>
</table>
Cloth Covering facial features

Shadow on face

Improper flash or Improper Lighting

Too much glare on spectacles
3.5.5.3 Signature Specifications

1. Please put your signature with black or dark blue ink on a white paper.
2. Get the signature digitally photographed/image scanned by a professional photo studio, and get the image cropped by the studio itself.
3. Only JPEG image formats will be accepted.
4. The maximum pixel resolution for the image is 800 x 300.
5. The minimum pixel resolution for the image is 400 x 150.
6. Mobile phone photographs of signatures are not acceptable, and can result in disqualification of the application without any refund of the fee.
3.6 Admit Card

Admit card can only be downloaded from the zonal GATE websites from 5th December 2012 onwards. Sending Admit cards by post has been discontinued. Bring the downloaded admit card at the test center along with at least one original (not photocopied / scanned copy) and valid (not expired) photo identification. ONLY one of the following photo identifications is permitted: Driving license, Passport, PAN Card, Voter ID, College ID, Employee identification card, or a notarized Affidavit with Photo, Signature, Date of Birth and Residential Address. Photocopies of the original identification document are not acceptable. Candidates will NOT be permitted to take the test, if original and valid photo identification is not presented.
4 Examination Related Information

4.1 Structure of GATE 2013

A candidate can apply for only ONE of the 21 papers listed in Table given below. The syllabus for each of the papers is given separately. Making a choice of the appropriate paper during GATE application is the responsibility of the candidate. Some guidelines in this respect are suggested below.

The candidate is expected to appear in a paper appropriate to the discipline of his/her qualifying degree. The candidate is, however, free to choose any paper according to his/her admission plan, keeping in mind the eligibility criteria of the institutions in which he/she wishes to seek admission.

Table: List of GATE papers and corresponding codes

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Paper</th>
<th>Code</th>
<th>Sl. No.</th>
<th>Paper</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerospace Engineering</td>
<td>AE</td>
<td>12</td>
<td>Instrumentation Engineering</td>
<td>IN</td>
</tr>
<tr>
<td>2</td>
<td>Agricultural Engineering</td>
<td>AG</td>
<td>13</td>
<td>Mathematics</td>
<td>MA</td>
</tr>
<tr>
<td>3</td>
<td>Architecture and Planning</td>
<td>AR</td>
<td>14</td>
<td>Mechanical Engineering</td>
<td>ME</td>
</tr>
<tr>
<td>4</td>
<td>Biotechnology</td>
<td>BT</td>
<td>15</td>
<td>Mining Engineering</td>
<td>MN</td>
</tr>
<tr>
<td>5</td>
<td>Civil Engineering</td>
<td>CE</td>
<td>16</td>
<td>Metallurgical Engineering</td>
<td>MT</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Engineering</td>
<td>CH</td>
<td>17</td>
<td>Physics</td>
<td>PH</td>
</tr>
<tr>
<td>7</td>
<td>Computer Science and Information Technology</td>
<td>CS</td>
<td>18</td>
<td>Production and Industrial Engineering</td>
<td>PI</td>
</tr>
<tr>
<td>8</td>
<td>Chemistry</td>
<td>CY</td>
<td>19</td>
<td>Textile Engineering and Fibre Science</td>
<td>TF</td>
</tr>
<tr>
<td>9</td>
<td>Electronics and Communication Engineering</td>
<td>EC</td>
<td>20</td>
<td>Engineering Sciences</td>
<td>XE*</td>
</tr>
<tr>
<td>10</td>
<td>Electrical Engineering</td>
<td>EE</td>
<td>21</td>
<td>Life Sciences</td>
<td>XL*</td>
</tr>
<tr>
<td>11</td>
<td>Geology and Geophysics</td>
<td>GG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XE PAPER SECTIONS

<table>
<thead>
<tr>
<th>Engineering Mathematics (Compulsory)</th>
<th>A</th>
<th>Chemistry (Compulsory)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Mechanics</td>
<td>B</td>
<td>Biochemistry</td>
<td>I</td>
</tr>
<tr>
<td>Materials Science</td>
<td>C</td>
<td>Botany</td>
<td>J</td>
</tr>
<tr>
<td>Solid Mechanics</td>
<td>D</td>
<td>Microbiology</td>
<td>K</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>E</td>
<td>Zoology</td>
<td>L</td>
</tr>
<tr>
<td>Polymer Science and Engineering</td>
<td>F</td>
<td>Food Technology</td>
<td>M</td>
</tr>
<tr>
<td>Food Technology</td>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* XE (Engineering Sciences) and XL (Life Sciences) papers are of general nature and will comprise of the sections listed in the above table. See further explanation below.

4.1.1 General Aptitude Questions

All the papers will contain few questions that test the General Aptitude (Language and Analytical Skills), apart from the core subject of the paper.
4.1.2 XE Paper

A candidate appearing in the XE paper has to answer the following

1. Section A – Engineering Mathematics
2. GA – General Aptitude
3. Any two of XE sections B to G

The choice of two out of the sections B to G can be made at the time of appearing for the exam after viewing the questions. Only two optional sections can be answered at a time. A candidate wishing to change from one optional to another optional section during the exam must first choose to deselect one of the previously chosen optional sections (B to G).

4.1.3 XL Paper

A candidate appearing in the XL paper has to answer the following

1. Section H – Chemistry
2. GA – General Aptitude
3. Any two of XL sections I to M

The choice of two out of the sections I to M can be made at the time of appearing for the exam after viewing the questions. Only two optional sections can be answered at a time. A candidate wishing to change from one optional to another optional section during the exam must first choose to deselect one of the previously chosen optional sections (I to M).

4.2 Duration and Exam Type

The GATE examination consists of a single paper of 3 hours duration that contains 65 questions carrying a maximum of 100 marks. The question paper will consist of only objective questions. The pattern of question papers is discussed separately in detail in Section 4.3.

The examination for the papers with codes AE, AG, AR, BT, CE, CH, CY, GG, PH, MA, MN, MT, TF, XE, and XL will be carried out as ONLINE computer based test where the candidates will be shown the questions in a random sequence on a computer screen. The candidates are required to enter the answer for each question using a mouse (keyboards will be disabled). Candidates will be provided with blank paper sheets for rough work. At the end of the three hour window, the computer will automatically close the screen from further actions.

For all other papers (CS, EC, EE, IN, ME, and PI), the candidates will be given the questions printed on a paper, and they have to mark the correct choice on an Optical Response Sheet (ORS) by darkening the appropriate bubble against each question using a black ink ball point pen.
4.3 Pattern of Question Papers and Marking Scheme

4.3.1 Pattern of Question Papers

The examination for the papers with codes AE, AG, AR, BT, CE, CH, CY, GG, MA, MN, MT, PH, TF, XE and XL will be conducted ONLINE using computers where the candidates will be required to select the answer for each question using a mouse. For all other papers (CS, EC, EE, IN, ME & PI), the candidates will have to mark the correct choice on an Optical Response Sheet (ORS) by darkening the appropriate bubble against each question.

In all the papers, there will be a total of 65 questions carrying 100 marks, out of which 10 questions carrying total of 15 marks are in General Aptitude (GA). The remaining 85% of the total marks is devoted to the syllabus of the paper (as indicated in the syllabus section).

GATE 2013 would contain questions of four different types in various papers:

(i) Multiple choice questions carrying 1 or 2 marks each; Each of the multiple choice objective questions in all papers and sections will contain four answers, of which one correct answer is to be marked.

(ii) Common data questions (which are also multiple choice questions), where two successive questions use the same set of input data;

Example

Statement for Common Data Questions, for instance, for Questions 48 and 49 in Main Paper:

Let X and Y be jointly distributed random variables such that the conditional distribution of Y, given X=x, is uniform on the interval (x-1,x+1). Suppose E(X)=1 and Var(X)=5/3.

First question using common data:

Q.48 The mean of the random variable Y is
(A) 1/2 (B) 1 (C) 3/2 (D) 2

Second question using common data:

Q.49 The variance of the random variable Y is
(A) 1/2 (B) 2/3 (C) 1 (D) 2

(iii) Linked answer questions (which are also multiple choice questions), where the answer to the first question in the pair is required to answer its successor;

Example: Statement for Linked Answer Questions, for instance, for Questions 52 and 53 in Main Paper:

An E. coli cell of volume 10-12 cm3 contains 60 molecules of lac-repressor. The repressor has a binding affinity (Kd) of 10-8 M and 10-9 M with and without lactose respectively, in the medium.

First question of the pair:
Q.52 The molar concentration of the repressor in the cell is

(A) 0.1 nM (B) 1 nM (C) 10 nM (D) 100 nM

Second question of the pair:

Q.53 Therefore the lac-operon is

(A) repressed and can only be induced with lactose.
(B) repressed and cannot be induced with lactose.
(C) not repressed.
(D) expressed only when glucose and lactose are present.

(iv) Numerical answer questions, where the answer is a number, to be entered by the candidate.

Design of Questions

The questions in a paper may be designed to test the following abilities:

(i) Recall: These are based on facts, principles, formulae or laws of the discipline of the paper. The candidate is expected to be able to obtain the answer either from his/her memory of the subject or at most from a one-line computation.

Example

Q. During machining maximum heat is produced

(A) in flank face
(B) in rake face
(C) in shear zone
(D) due to friction between chip and tool

(ii) Comprehension: These questions will test the candidate’s understanding of the basics of his/her field, by requiring him/her to draw simple conclusions from fundamental ideas.

Example

Q. A DC motor requires a starter in order to
(A) develop a starting torque
(B) compensate for auxiliary field ampere turns
(C) limit armature current at starting
(D) provide regenerative braking

(iii) Application: In these questions, the candidate is expected to apply his/her knowledge either through computation or by logical reasoning.
Example

Q. The sequent depth ratio of a hydraulic jump in a rectangular channel is 16.48. The Froude number at the beginning of the jump is:

(A) 5.0 (B) 8.0 (C) 10.0 (D) 12.0

(iv) Analysis and Synthesis: These can be linked answer questions, where the answer to the first question of the pair is required in order to answer its successor. Or these can be common data questions, in which two questions share the same data but can be solved independently of each other.

Common data based questions: Two questions are linked to a common data problem, passage and the like. Each question is independent and its solution is obtainable from the above problem data or passage directly. (Answer of the previous question is not required to solve the next question). Each question under this group will carry two marks.

Linked answer questions: These questions are of problem solving type. A problem statement is followed by two questions based on the problem statement. The two questions are designed such that the solution to the second question depends upon the answer to the first one. In other words, the first answer is an intermediate step in working out the second answer. Each question in such ‘linked answer questions’ will carry two marks.

Examples of each of this design is given in the types of questions above.

The questions based on the above four logics may be a mix of single stand alone statement/phrase/data type questions, combination of option codes type questions or match items type questions.

4.4 Marking Scheme

For 1mark multiple-choice questions, 1/3 mark will be deducted for a wrong answer. Likewise, for 2 marks multiple-choice questions, 2/3 mark will be deducted for a wrong answer. However, for the linked answer question pair, where each question carries 2 marks, 2/3 mark will be deducted for a wrong answer to the first question only. There is no negative marking for wrong answer to the second question of the linked answer question pair. If the first question in the linked pair is wrongly answered or is unattempted, then the answer to the second question in the pair will not be evaluated. There is no negative marking for numerical answer type questions.

4.4.1 General Aptitude (GA) Questions

In all papers, GA questions are of multiple choice type, and carry a total of 15 marks. The GA section includes 5 questions carrying 1 mark each (sub-total 5 marks) and 5 questions carrying 2 marks each (sub-total 10 marks).

4.4.2 Question papers other than GG, XE and XL

These papers would contain 25 questions carrying one mark each (sub-total 25 marks) and 30 questions carrying two marks each (sub-total 60 marks). Out of these, two pairs of questions would be common data questions, and two pairs of questions would be linked answer questions. In the ONLINE papers, the question paper will consist of questions of multiple choice type and numerical answer type. For multiple choice type questions, each question will have four choices.
for the answer. For numerical answer type questions, each question will have a number as the answer and choices will not be given. Candidates will have to enter the answer using a virtual keypad.

4.4.3 GG (Geology and Geophysics) Paper

Apart from the General Aptitude (GA) section, the GG question paper consists of two parts: Part A and Part B. Part A is common for all candidates. Part B contains two sections: Section 1 (Geology) and Section 2 (Geo-physics). Candidates will have to attempt questions in Part A and either Section 1 or Section 2 in Part B.

Part A consists of 25 multiple-choice questions carrying 1-mark each (sub-total 25 marks & some of these may be numerical questions). Each section in Part B (Section 1 and Section 2) consists of 30 multiple-choice questions carrying 2 marks each (sub-total 60 marks and some of these may be numerical questions). Out of these, two pairs of questions would be common data questions, and two pairs of questions would be linked answer questions.

4.4.4 XE Paper (Engineering Sciences)

In XE paper, Engineering Mathematics section (Section A) is compulsory. This section contains 11 multiple-choice questions carrying a total of 15 marks: 7 questions carrying 1-mark each (sub-total 7 marks), and 4 questions carrying 2-marks each (sub-total 8 marks). Some of the multiple-choice questions may be replaced by numerical questions.

Each of the other sections of the XE paper (Sections B through G) contains 22 questions carrying a total of 35 marks: 9 questions carrying 1 mark each (sub-total 9 marks) and 13 questions carrying 2 marks each (sub-total 26 marks). Out of the 2 mark questions, 2 pairs are common data questions and 1 pair is linked answer questions. Some of the multiple choice questions may be replaced by numerical questions.

4.4.5 XL Paper (Life Sciences)

In XL paper, Chemistry section (Section H) is compulsory. This section contains 15 multiple-choice questions carrying a total of 25 marks: 5 questions carrying 1 mark each (sub-total 5 marks) and 10 questions carrying 2-marks each (sub-total 20 marks). Out of the 2-mark questions, 1 pair is common data questions, and 1 pair is linked answer questions. Some of the multiple-choice questions may be replaced by numerical questions.

Each of the other sections of the XL paper (Sections I through M) contains 20 multiple choice questions carrying a total of 30 marks: 10 questions carrying 1 mark each (sub-total 10 marks) and 10 questions carrying 2 marks each (sub-total 20 marks). Some of the multiple-choice questions may be replaced by numerical questions.
4.5 GATE Syllabi

4.5.1 General Aptitude (GA): Common to All Papers Engineering

1. Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.

Sample Questions

Verbal Ability

Q.1. Choose the appropriate answer to complete the following sentence:
After several ……. attempts to send the missile into space, the spacecraft was finally launched successfully.

(A) abortive (B) difficult (C) experimental (D) preliminary

Ans. (A)

Q.2. Choose the appropriate answer to complete the following sentence:
Medicine is to illness as law is to _________

(A) discipline (B) anarchy (C) treason (D) etiquette

Ans. (B)

Q.3. Read the following paragraph:

“The ordinary form of mercury thermometer is used for temperature ranging from –40°F to 500°F. For measuring temperature below –40°F, thermometers filled with alcohol are used. These are, however, not satisfactory for use in high temperatures. When a mercury thermometer is used for temperature above 500°F, the space above the mercury is filled with some inert gas, usually nitrogen or carbon dioxide, placed in the thermometer under pressure. As the mercury rises, the gas pressures are increased, so that it is possible to use these thermometers for temperatures as high as 1000°F.”

With what, besides mercury, would a thermometer be filled if it was designed to be used for measuring temperature of about 500°F?

(A) Pyrometer (B) Inert gas (C) Iron and brass (D) Gas

Ans. (B)

Q.4. The cost of manufacturing tractors in Korea is twenty percent less than the cost of manufacturing tractors in Germany. Even after transportation fees and import taxes are added, it is still cheaper to import tractors from Korea to Germany than to produce tractors in Germany.
Which of the following assertions is best supported by the above information?

(A) Labour costs in Korea are twenty percent below those in Germany.

(B) Importing tractors into Germany will eliminate twenty percent of the manufacturing jobs in Germany.

(C) The costs of transporting a tractor from Korea to Germany is more than twenty percent of the cost of manufacturing the tractor in Korea.

(D) The import taxes on a tractor imported from Korea to Germany is less than twenty percent of the cost of manufacturing the tractor in Germany.

Ans. (D)

Numerical Ability

Q.5. In a survey, $\frac{3}{16}$ of the people surveyed told that they preferred to use public transport while commuting daily to office. $\frac{5}{8}$ of the people surveyed told that they preferred to use their own vehicles. The remaining 75 respondents said that they had no clear preference. How many people preferred to use public transport?

(A) 75 (B) 100 (C) 125 (D) 133

Ans. (A)
4.5.2 Aerospace Engineering (AE)

Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, eigen values and eigen vectors.

Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals. Theorems of Stokes, Gauss and Green.

Differential Equations: First order linear and nonlinear equations, higher order linear ODEs with constant coefficients, Cauchy and Euler equations, initial and boundary value problems, Laplace transforms. Partial differential equations and separation of variables methods.

Flight Mechanics

Airplane performance: Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; take off and landing; steady climb & descent, absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds.

Static stability: Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces.

Dynamic stability: Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lat-directional dynamics; longitudinal modes; lateral-directional modes.

Space Dynamics

Aerodynamics

Basic Fluid Mechanics: Incompressible irrotational flow, Helmholtz and Kelvin theorem, singularities and superposition, viscous flows, boundary layer on a flat plate.

Airfoils and wings: Classification of airfoils, aerodynamic characteristics, high lift devices, Kutta Joukowski theorem; lift generation; thin airfoil theory; wing theory; induced drag; qualitative treatment of low aspect ratio wings.

Viscous Flows: Flow separation, introduction to turbulence, transition, structure of a turbulent boundary layer.

Wind Tunnel Testing: Measurement and visualisation techniques.

Structures

Stress and Strain: Equations of equilibrium, constitutive law, strain-displacement relationship, compatibility equations, plane stress and strain, Airy’s stress function.

Structural Dynamics: Free and forced vibration of discrete systems. Damping and resonance. Dynamics of continuous systems.

Propulsion

Thermodynamics of Aircraft Gas Turbine engines, thrust and thrust augmentation.

Turbomachinery: Axial compressors and turbines, centrifugal pumps and compressors.

4.5.3 Agricultural Engineering (AG)

Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs -Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Farm Machinery And Power

Sources of power on the farm-human, animal, mechanical, electrical, wind, solar and biomass; bio-fuels; design and selection of machine elements – gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, torque, speed, displacement and acceleration on machine elements.

Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; mechanics of animal traction; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage, sowing, planting, fertilizer application, inter-cultivation, spraying, mowing, chaff cutting, harvesting, threshing and transport; testing of agricultural machinery and equipment; calculation of performance parameters -field capacity, efficiency, application rate and losses; cost analysis of implements and tractors

Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems – fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses.

Tractors and power tillers – type, selection, maintenance and repair; tractor clutches and brakes; power transmission systems – gear trains, differential, final drives and power take-off; mechanics of tractor chassis; traction theory; three point hitches- free link and restrained link operations; mechanical steering and hydraulic control systems used in tractors; human engineering and safety in tractor design; tractor tests and performance.

Soil And Water Conservation Engineering

Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; hydrostatic forces on plane and curved surface; continuity equation; Bernoulli’s theorem; laminar and turbulent flow in pipes, Darcy- Weisbach and Hazen-Williams equations, Moody’s diagram; flow through orifices and notches; flow in open channels.
Engineering properties of soils; fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr’s circle of stress, active and passive earth pressures; stability of slopes.

Hydrological cycle; meteorological parameters and their measurement, analysis of precipitation data; abstraction from precipitation; runoff; hydrograph analysis, unit hydrograph theory and application; stream flow measurement; flood routing, hydrological reservoir and channel routing.

Measurement of distance and area; chain surveying, methods of traversing; measurement of angles and bearings, plane table surveying; types of levelling; contouring; instruments for surveying and levelling; computation of earth work.

Mechanics of soil erosion, soil erosion types; wind and water erosion; factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion; terraces and bunds; vegetative waterways; gully control structures, drop, drop inlet and chute spillways; earthen dams; water harvesting structures, farm ponds, watershed management.

Soil-water-plant relationship, water requirement of crops; consumptive use and evapotranspiration; irrigation scheduling; irrigation efficiencies; design of irrigation channels; measurement of soil moisture, irrigation water and infiltration; surface, sprinkler and drip methods of irrigation; design and evaluation of irrigation methods.

Drainage coefficient; planning, design and layout of surface and sub-surface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality.

Groundwater occurrence confined and unconfined aquifers, evaluation of aquifer properties; well hydraulics; groundwater recharge.

Classification of pumps; pump characteristics; pump selection and installation.

Agricultural Processing And Food Engineering

Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; condensation and boiling heat transfer; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations.

Material and energy balances in food processing systems; water activity, sorption and desorption isotherms; centrifugal separation of solids, liquids and gases; kinetics of microbial death – pasteurization and sterilization of liquid foods; preservation of food by cooling and freezing; refrigeration and cold storage basics and applications; psychrometry – properties of air-vapour mixture; concentration and drying of liquid foods – evaporators, tray, drum and spray dryers.

Mechanics and energy requirement in size reduction of granular solids; particle size analysis for comminuted solids; size separation by screening; fluidization of granular solids-pneumatic, bucket, screw and belt conveying; cleaning and grading; Effectiveness of grain cleaners.

Hydrothermal treatment, drying and milling of cereals, pulses and oilseeds; Processing of seeds, spices, fruits and vegetables; By-product utilization from processing industries.

Controlled and modified atmosphere storage; Perishable food storage, godowns, bins and grain silos.
4.5.4 Architecture and Planning (AR)

City planning: Evolution of cities; principles of city planning; types of cities & new towns; planning regulations and building byelaws; eco-city concept; sustainable development.

Housing: Concept of housing; neighbourhood concept; site planning principles; housing typology; housing standards; housing infrastructure; housing policies, finance and management; housing programs in India; self help housing.

Landscape Design: Principles of landscape design and site planning; history of landscape styles; landscape elements and materials; plant characteristics & planting design; environmental considerations in landscape planning.

Computer Aided Design: Application of computers in architecture and planning; understanding elements of hardware and software; computer graphics; programming languages – C and Visual Basic and usage of packages such as AutoCAD, 3D-Studio, 3D Max.

Environmental Studies in Building Science: Components of Ecosystem; ecological principles concerning environment; climate responsive design; energy efficient building design; thermal comfort; solar architecture; principles of lighting and styles for illumination; basic principles of architectural acoustics; environment pollution, their control & abatement.

Visual and Urban Design: Principles of visual composition; proportion, scale, rhythm, symmetry, harmony, datum, balance, form, colour, texture; sense of place and space, division of space; barrier free design; focal point, vista, image ability, visual survey, figure-background relationship.

History of Architecture: Indian – Indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and Mughal periods; European – Egyptian, Greek, Roman, medieval and renaissance periods- construction and architectural styles; vernacular and traditional architecture.

Development of Contemporary Architecture: Architectural developments and impacts on society since industrial revolution; influence of modern art on architecture; works of national and international architects; art novuea, eclecticism, international styles, post modernism, deconstruction in architecture.

Building Services: Water supply, sewerage and drainage systems; sanitary fittings and fixtures; plumbing systems, principles of internal & external drainage systems, principles of electrification of buildings, intelligent buildings; elevators & escalators, their standards and uses; air-conditioning systems; fire fighting systems, building safety and security systems.

Building Construction and Management: Building construction techniques, methods and details; building systems and prefabrication of building elements; principles of modular coordination; estimation, specification, valuation, professional practice; project management techniques e.g., PERT, CPM etc;

Materials and Structural Systems: Behavioural characteristics of all types of building materials e.g. mud, timber, bamboo, brick, concrete, steel, glass, FRP, different polymers, composites; principles of strength of materials; design of structural elements in wood, steel and RCC; elastic and limit state design; complex structural systems; principles of pre-stressing; tall buildings; principles of disaster resistant structures.

Planning Theory: Regional planning; settlement system planning; history of human settlements; growth of cities & metropolises; principles of Ekistics; rural-urban migration; urban conservation; urban renewal; Five-year plan; structural and sectoral plan.

Techniques of Planning: Planning survey techniques; preparation of urban and regional structure plans, development plans, action plans; site planning principles and design; statistical methods of data analysis; application of G.I.S and remote sensing techniques in urban and regional planning; decision making models.
Traffic and Transportation Planning: Principles of traffic engineering and transportation planning; traffic survey methods; design of roads, intersections, grade separators and parking areas; hierarchy of roads and levels of services; traffic and transport management in urban areas, intelligent transportation system; mass transportation planning; para-transits and other modes of transportation, pedestrian & slow moving traffic planning.

Infrastructure, Services and Amenities: Principles of water supply and sanitation systems; water treatment; solid waste disposal systems; waste treatment, recycle & reuse; urban rainwater harvesting; power supply and communication systems — network, design & guidelines; demography related standards at various levels of the settlements for health, education, recreation, religious & public-semi public facilities.

Development Administration and Management: Planning laws; development control and zoning regulations; laws relating to land acquisition; development enforcements, urban land ceiling; land management techniques; planning and municipal administration; disaster mitigation management; 73rd & 74th Constitutional amendments; valuation & taxation; revenue resources and fiscal management; public participation and role of NGO & CBO; Institutional networking & capacity building.
4.5.5 Biotechnology (BT)

Engineering Mathematics

Linear Algebra: Matrices and determinants, Systems of linear equations, Eigen values and Eigen vectors.

Calculus: Limit, continuity and differentiability, Partial derivatives, Maxima and minima, Sequences and series, Test for convergence, Fourier Series.

Differential Equations: Linear and nonlinear first order ODEs, higher order ODEs with constant coefficients, Cauchy’s and Euler’s equations, Laplace transforms, PDE- Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation, Random variables, Poisson, normal and binomial distributions, Correlation and regression analysis.

Numerical Methods: Solution of linear and nonlinear algebraic equations, Integration of trapezoidal and Simpson’s rule, Single and multistep methods for differential equations.

Biotechnology

Microbiology: Prokaryotic and eukaryotic cell structure; Microbial nutrition, growth and control; Microbial metabolism (aerobic and anaerobic respiration, photosynthesis); Nitrogen fixation; Chemical basis of mutations and mutagens; Microbial genetics (plasmids, transformation, transduction, conjugation); Microbial diversity and characteristic features; Viruses.

Biochemistry: Biomolecules and their conformation; Weak inter-molecular interactions in biomacromolecules; Chemical and functional nature of enzymes; Kinetics of single substrate and bi-substrate enzyme catalyzed reactions; Bioenergetics; Metabolism (Glycolysis, TCA and Oxidative phosphorylation); Membrane transport and pumps; Cell cycle and cell growth control; Cell signaling and signal transduction.

Molecular Biology and Genetics: Molecular structure of genes and chromosomes; DNA replication and control; Transcription and its control; Translational processes; Regulatory controls in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extrachromosomal inheritance; Chromosomal variation; Population genetics; Transposable elements, Molecular basis of genetic diseases and applications.

Process Biotechnology: Bioprocess technology for the production of cell biomass and primary/secondary metabolites, such as baker’s yeast, ethanol, citric acid, amino acids, exo-polysacharides, antibiotics and pigments etc.; Microbial production, purification and bioprocess application(s) of industrial enzymes; Production and purification of recombinant proteins on a large scale; Chromatographic and membrane based bioseparation methods; Immobilization of enzymes and cells and their application for bioconversion processes.

Aerobic and anaerobic biological processes for stabilization of solid / liquid wastes; Bioremediation.

Bioprocess Engineering: Kinetics of microbial growth, substrate utilization and product formation; Simple structured models; Sterilization of air and media; Batch, fed-batch and continuous processes; Aeration and agitation; Mass transfer in bioreactors; Rheology of fermentation fluids; Scale-up concepts; Design of fermentation media; Various types of microbial and enzyme reactors; Instrumentation in bioreactors.

Plant and Animal Biotechnology: Special features and organization of plant cells; Totipotency; Regeneration of plants; Plant products of industrial importance; Biochemistry of major metabolic pathways and products; Autotrophic and heterotrophic growth; Plant growth regulators and elicitors; Cell suspension culture development: methodology, kinetics of growth and production formation, nutrient
optimization; Production of secondary metabolites by plant suspension cultures; Hairy root cultures and their cultivation. Techniques in raising transgenics.

Characteristics of animal cells: Metabolism, regulation and nutritional requirements for mass cultivation of animal cell cultures; Kinetics of cell growth and product formation and effect of shear force; Product and substrate transport; Micro & macro-carrier culture; Hybridoma technology; Live stock improvement; Cloning in animals; Genetic engineering in animal cell culture; Animal cell preservation.

Immunology: The origin of immunology; Inherent immunity; Humoral and cell mediated immunity; Primary and secondary lymphoid organ; Antigen; B and T cells and Macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Synthesis of antibody and secretion; Molecular basis of antibody diversity; Polyclonal and monoclonal antibody; Complement; Antigen-antibody reaction; Regulation of immune response; Immune tolerance; Hyper sensitivity; Autoimmunity; Graft versus host reaction.

Recombinant DNA Technology: Restriction and modification enzymes; Vectors: plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; cDNA and genomic DNA library; Gene isolation; Gene cloning; Expression of cloned gene; Transposons and gene targeting; DNA labeling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In-situ hybridization; RAPD; RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy.

Bioinformatics: Major bioinformatics resources (NCBI, EBI, ExPASy); Sequence and structure databases; Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny); Genomics and Proteomics (Large scale genome sequencing strategies; Comparative genomics; Understanding DNA microarrays and protein arrays); Molecular modeling and simulations (basic concepts including concept of force fields).
4.5.6 Civil Engineering (CE)

Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

Structural Engineering

Mechanics: Bending moment and shear force in statically determinate beams. Simple stress and strain relationship: Stress and strain in two dimensions, principal stresses, stress transformation, Mohr’s circle. Simple bending theory, flexural and shear stresses, unsymmetrical bending, shear centre. Thin walled pressure vessels, uniform torsion, buckling of column, combined and direct bending stresses.

Structural Analysis: Analysis of statically determinate trusses, arches, beams, cables and frames, displacements in statically determinate structures and analysis of statically indeterminate structures by force/energy methods, analysis by displacement methods (slope deflection and moment distribution methods), influence lines for determinate and indeterminate structures. Basic concepts of matrix methods of structural analysis.

Concrete Structures: Concrete Technology- properties of concrete, basics of mix design. Concrete design-basic working stress and limit state design concepts, analysis of ultimate load capacity and design of members subjected to flexure, shear, compression and torsion by limit state methods. Basic elements of prestressed concrete, analysis of beam sections at transfer and service loads.

Steel Structures: Analysis and design of tension and compression members, beams and beam-columns, column bases. Connections- simple and eccentric, beam–column connections, plate girders and trusses. Plastic analysis of beams and frames.

Geotechnical Engineering

Soil Mechanics:Origin of soils, soil classification, three-phase system, fundamental definitions, relationship and interrelationships, permeability & seepage, effective stress principle, consolidation, compaction, shear strength.

Water Resources Engineering

Hydrology: Hydrologic cycle, rainfall, evaporation, infiltration, stage discharge relationships, unit hydrographs, flood estimation, reservoir capacity, reservoir and channel routing. Well hydraulics.

Environmental Engineering

Water requirements: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, sludge disposal, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment Unit operations and unit processes of domestic wastewater, sludge disposal.

Air Pollution: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Noise Pollution: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.

Transportation Engineering

Highway Planning: Geometric design of highways, testing and specifications of paving materials, design of flexible and rigid pavements.

Traffic Engineering: Traffic characteristics, theory of traffic flow, intersection design, traffic signs and signal design, highway capacity.

Surveying

Importance of surveying, principles and classifications, mapping concepts, coordinate system, map projections, measurements of distance and directions, leveling, theodolite traversing, plane table surveying, errors and adjustments, curves.
4.5.7 Chemical Engineering (CH)

Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series, Residue theorem.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson’s rule, single and multi-step methods for differential equations.

Chemical Engineering

Process Calculations and Thermodynamics: Laws of conservation of mass and energy; use of tie components; recycle, bypass and purge calculations; degree of freedom analysis. First and Second laws of thermodynamics. First law application to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: equation of state and departure function, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibria.

Fluid Mechanics and Mechanical Operations: Fluid statics, Newtonian and non-Newtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis, shell balances, flow through pipeline systems, flow meters, pumps and compressors, packed and fluidized beds, elementary boundary layer theory, size reduction and size separation; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, mixing and agitation; conveying of solids.

Heat Transfer: Conduction, convection and radiation, heat transfer coefficients, steady and unsteady heat conduction, boiling, condensation and evaporation; types of heat exchangers and evaporators and their design.

Mass Transfer: Fick’s laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stagewise and continuous contacting and stage efficiencies; HTU & NTU concepts design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption.

Chemical Reaction Engineering: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.
Instrumentation and Process Control: Measurement of process variables; sensors, transducers and their dynamics, transfer functions and dynamic responses of simple systems, process reaction curve, controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response and controller tuning, cascade, feed forward control.

Plant Design and Economics: Process design and sizing of chemical engineering equipment such as compressors, heat exchangers, multistage contactors; principles of process economics and cost estimation including total annualized cost, cost indexes, rate of return, payback period, discounted cash flow, optimization in design.

Chemical Technology: Inorganic chemical industries; sulfuric acid, NaOH, fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries; polyethylene, polypropylene, PVC and polyester synthetic fibers.
4.5.8 Computer Science and Information Technology (CS)

Engineering Mathematics

Mathematical Logic: Propositional Logic; First Order Logic.

Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions; uniform, normal, exponential, Poisson, Binomial.

Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra.

Combinatorics: Permutations; Combinations; Counting; Summation; generating functions; recurrence relations; asymptotics.

Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity; Isomorphism.

Linear Algebra: Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors.

Calculus: Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of definite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.

Computer Science And Information Technology

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point).

Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.

Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.

Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average case analysis; Design: Greedy approach, Dynamic programming, Divide-and-conquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NP-hard, NP-complete.

Theory of Computation: Regular languages and finite automata, Context free languages and Push-down automata, Recursively enumerable sets and Turing machines, Undecidability.

Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization.

Operating System: Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.
Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.

Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.

Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.
4.5.9 Chemistry (CY)

Physical Chemistry

Structure: Quantum theory: principles and techniques; applications to a particle in a box, harmonic oscillator, rigid rotor and hydrogen atom; valence bond and molecular orbital theories, Hückel approximation; approximate techniques: variation and perturbation; symmetry, point groups; rotational, vibrational, electronic, NMR, and ESR spectroscopy

Equilibrium: Kinetic theory of gases; First law of thermodynamics, heat, energy, and work; second law of thermodynamics and entropy; third law and absolute entropy; free energy; partial molar quantities; ideal and non-ideal solutions; phase transformation: phase rule and phase diagrams – one, two, and three component systems; activity, activity coefficient, fugacity, and fugacity coefficient; chemical equilibrium, response of chemical equilibrium to temperature and pressure; colligative properties; Debye-Hückel theory; thermodynamics of electrochemical cells; standard electrode potentials: applications – corrosion and energy conversion; molecular partition function (translational, rotational, vibrational, and electronic).

Kinetics: Rates of chemical reactions, temperature dependence of chemical reactions; elementary, consecutive, and parallel reactions; steady state approximation; theories of reaction rates – collision and transition state theory, relaxation kinetics, kinetics of photochemical reactions and free radical polymerization, homogeneous catalysis, adsorption isotherms and heterogeneous catalysis.

Inorganic Chemistry

Main group elements: General characteristics, allotropes, structure and reactions of simple and industrially important compounds: boranes, carboranes, silicones, silicates, boron nitride, borazines and phosphazenes. Hydrides, oxides and oxoacids of pnictogens (N, P), chalcogens (S, Se & Te) and halogens, xenon compounds, pseudo halogens and interhalogen compounds. Shapes of molecules and hard-soft acid base concept. Structure and bonding (VBT) of B, Al, Si, N, P, S, Cl compounds. Allotropes of carbon: graphite, diamond, C_{60}. Synthesis and reactivity of inorganic polymers of Si and P.

Transition Elements: General characteristics of d and f block elements; coordination chemistry: structure and isomerism, stability, theories of metal-ligand bonding (CFT and LFT), mechanisms of substitution and electron transfer reactions of coordination complexes. Electronic spectra and magnetic properties of transition metal complexes, lanthanides and actinides. Metal carbynls, metal-metal bonds and metal atom clusters, metalloccenes; transition metal complexes with bonds to hydrogen, alkyls, alkenes and arenes; metal carbenes; use of organometallic compounds as catalysts in organic synthesis. Bioinorganic chemistry of Na, K, Mg, Ca, Fe, Co, Zn, Cu and Mo.

Solids: Crystal systems and lattices, miller planes, crystal packing, crystal defects; Bragg’s Law, ionic crystals, band theory, metals and semiconductors, Different structures of AX, AX₂, ABX₃ compounds, spinels.

Instrumental methods of analysis: Atomic absorption and emission spectroscopy including ICP-AES, UV-visible spectrophotometry, NMR, mass, Mossbauer spectroscopy (Fe and Sn), ESR spectroscopy, chromatography including GC and HPLC and electro-analytical methods (Coulometry, cyclic voltammetry, polarography – amperometry, and ion selective electrodes).

Organic Chemistry

Stereochemistry: Chirality of organic molecules with or without chiral centres. Specification of configuration in compounds having one or more stereogenic centres. Enantiotopic and diastereotopic atoms, groups and faces. Stereoselective and stereospecific synthesis. Conformational analysis of acyclic and cyclic compounds. Geometrical isomerism. Configurational and conformational effects on reactivity and selectivity/specificity.
Reaction mechanism: Methods of determining reaction mechanisms. Nucleophilic and electrophilic substitutions and additions to multiple bonds. Elimination reactions. Reactive intermediates- carbocations, carbanions, carbenes, nitrenes, arynes, free radicals. Molecular rearrangements involving electron deficient atoms.

Organic synthesis: Synthesis, reactions, mechanisms and selectivity involving the following- alkenes, alkynes, arenes, alcohols, phenols, aldehydes, ketones, carboxylic acids and their derivatives, halides, nitro compounds and amines. Use of compounds of Mg, Li, Cu, B and Si in organic synthesis. Concepts in multistep synthesis- retrosynthetic analysis, disconnections, synthons, synthetic equivalents, reactivity umpolung, selectivity, protection and deprotection of functional groups.

Pericyclic reactions: Electrocyclic, cycloaddition and sigmatropic reactions. Orbital correlation, FMO and PMO treatments.

Photochemistry: Basic principles. Photochemistry of alkenes, carbonyl compounds, and arenes. Photooxidation and photoreduction. Di-π- methane rearrangement, Barton reaction.

Heterocyclic compounds: Structure, preparation, properties and reactions of furan, pyrrole, thiophene, pyridine, indole and their derivatives.

Biomolecules: Structure, properties and reactions of mono- and di-saccharides, physicochemical properties of amino acids, chemical synthesis of peptides, structural features of proteins, nucleic acids, steroids, terpenoids, carotenoids, and alkaloids.

Spectroscopy: Principles and applications of UV-visible, IR, NMR and Mass spectrometry in the determination of structures of organic molecules.
4.5.10 Electronics and Communication Engineering (EC)

Engineering Mathematics

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’ series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory: Fourier transform, Laplace transform, Z-transform.

Electronics And Communication Engineering

Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform.
Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.

Communications: Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Electromagnetics: Elements of vector calculus: divergence and curl; Gauss’ and Stokes’ theorems, Maxwell’s equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.
4.5.11 Electrical Engineering (EE)

Engineering Mathematics

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’ series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory: Fourier transform, Laplace transform, Z-transform.

Electrical Engineering

Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis, transient response of dc and ac networks; sinusoidal steady-state analysis, resonance, basic filter concepts; ideal current and voltage sources, Thevenin’s, Norton’s and Superposition and Maximum Power Transfer theorems, two-port networks, three phase circuits; Gauss Theorem, electric field and potential due to point, line, plane and spherical charge distributions; Ampere’s and Biot-Savart’s laws; inductance; dielectrics; capacitance.

Signals and Systems: Representation of continuous and discrete-time signals; shifting and scaling operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms.

Electrical Machines: Single phase transformer – equivalent circuit, phasor diagram, tests, regulation and efficiency; three phase transformers – connections, parallel operation; auto-transformer; energy conversion principles; DC machines – types, windings, generator characteristics, armature reaction and commutation, starting and speed control of motors; three phase induction motors – principles, types, performance characteristics, starting and speed control; single phase induction motors; synchronous machines – performance, regulation and parallel operation of generators, motor starting, characteristics and applications; servo and stepper motors.

Power Systems: Basic power generation concepts; transmission line models and performance; cable performance, insulation; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow; voltage control; power factor correction; economic operation; symmetrical components; fault analysis; principles of over-current, differential and distance protection; solid state relays and digital protection; circuit breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission and FACTS concepts.

Control Systems: Principles of feedback; transfer function; block diagrams; steady-state errors; Routh and Niquist techniques; Bode plots; root loci; lag, lead and lead-lag compensation; state space model; state transition matrix, controllability and observability.
Electrical and Electronic Measurements: Bridges and potentiometers; PMMC, moving iron, dynamometer and induction type instruments; measurement of voltage, current, power, energy and power factor; instrument transformers; digital voltmeters and multimeters; phase, time and frequency measurement; Q-meters; oscilloscopes; potentiometric recorders; error analysis.

Analog and Digital Electronics: Characteristics of diodes, BJT, FET; amplifiers – biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers – characteristics and applications; simple active filters; VCOs and timers; combinational and sequential logic circuits; multiplexer; Schmitt trigger; multi-vibrators; sample and hold circuits; A/D and D/A converters; 8-bit microprocessor basics, architecture, programming and interfacing.

Power Electronics and Drives: Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs – static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters – fully controlled and half controlled; principles of choppers and inverters; basis concepts of adjustable speed dc and ac drives.
4.5.12 Geology and Geophysics (GG)

4.5.12.1 Part A: Common To Geology And Geophysics

Earth and Planetary system, size, shape, internal structure and composition of the earth; atmosphere and greenhouse effect; isostasy; elements of seismology; physical properties of the interior of the earth; continents and continental processes; physical oceanography; geomagnetism and paleomagnetism, continental drift, plate tectonics.

Weathering; soil formation; action of river, wind, glacier and ocean; earthquakes, volcanism and orogeny. Basic structural geology, mineralogy and petrology. Geological time scale and geochronology; stratigraphic principles; major stratigraphic divisions of India. Engineering properties of rocks and soils. Ground water geology. Geological and geographical distribution of ore, coal and petroleum resources of India.

Introduction to remote sensing. Physical basis and applications of gravity, magnetic, electrical, electromagnetic, seismic and radiometric prospecting for oil, mineral and ground water; introductory well logging.

4.5.12.2 Part B – Section 1: Geology

Crystalsymmetry, forms, twinning; crystal chemistry; optical mineralogy, classification of minerals, diagnostic physical and optical properties of rock forming minerals.

Igneous rocks – classification, forms and textures, magmatic differentiation; phase diagrams and trace elements as monitors of magma evolutionary processes; mantle melting models and derivation and primary magmas. Metamorphism; controlling factors, metamorphic facies, grade and basic types; metamorphism of pelitic, mafic and impure carbonate rocks; role of fluids in metamorphism; metamorphic P-T-t paths and their tectonic significance; Igneous and metamorphic provinces of India; structure and petrology of sedimentary rocks; sedimentary processes and environments, sedimentary facies, basin analysis; association of igneous, sedimentary and metamorphic rocks with tectonic setting.

Stress, strain and material response; brittle and ductile deformation; primary and secondary structures; geometry and genesis of folds, faults, joints, unconformities; cleavage, schistosity and lineation; methods of projection, tectonites and their significance; shear zone; superposed folding; basement cover relationship.

Morphology, classification and geological significance of important invertebrates, vertebrates, microfossils and palaeoflora; stratigraphic principles and Indian stratigraphy.

Geomorphic processes and agents; development and evolution of landforms; slope and drainage; processes on deep oceanic and near-shore regions; quantitative and applied geomorphology.

Oremineralogy and optical properties of ore minerals; ore forming processes vis-à-vis ore-rock association (magmatic, hydrothermal, sedimentary and metamorphogenic ores); ores and metamorphism; fluid inclusions as an ore genetic tool; prospecting and exploration of economic minerals; sampling, ore reserve estimation, geostatistics, mining methods. Coal and petroleum geology; origin and distribution of mineral and fuel deposits in India; marine geology and ocean resources; ore dressing and mineral economics.

Cosmic abundance; meteorites; geochemical evolution of the earth; geochemical cycles; distribution of major, minor and trace elements; elements of geochemical thermodynamics, isotope geochemistry; geochemistry of waters including solution equilibria and water rock interaction.
Engineering properties of rocks and soils; rocks as construction materials; role of geology in the construction of engineering structures including dams, tunnels and excavation sites; natural hazards.

Ground water geology – exploration, well hydraulics and water quality. Basic principles of remote sensing – energy sources and radiation principles, atmospheric absorption, interaction of energy with earth’s surface, air-photo interpretation, multispectral remote sensing in visible, infrared, thermal IR and microwave regions, digital processing of satellite images. GIS – basic concepts, raster and vector mode operation.

4.5.12.3 Part B – Section 2: Geophysics

The earth as a planet; different motions of the earth; gravity field of the earth, Clairaut’s theorem, size and shape of earth; geochronology; seismology and interior of the earth; variation of density, velocity, pressure, temperature, electrical and magnetic properties of the earth; earthquakes-causes and measurements, magnitude and intensity, focal mechanisms, earthquake quantification, source characteristics, seismotectonics and seismic hazards; digital seismographs, geomagnetic field, paleomagnetism; oceanic and continental lithosphere; plate tectonics; heat flow; upper and lower atmospheric phenomena.

Scalar and vector potential fields; Laplace, Maxwell and Helmholtz equations for solution of different types of boundary value problems in Cartesian, cylindrical and spherical polar coordinates; Green’s theorem; Image theory; integral equations in potential theory; Eikonal equation and Ray theory. Basic concepts of forward and inverse problems of geophysics, Ill-posedness of inverse problems.

‘G’ and ‘g’ units of measurement, absolute and relative gravity measurements; Land, airborne, shipborne and bore-hole gravity surveys; various corrections in gravity data reduction – free air, Bouguer and isostatic anomalies; density estimates of rocks; regional and residual gravity separation; principle of equivalent stratum; upward and downward continuation; wavelength filtering; preparation and analysis of gravity maps; gravity anomalies and their interpretation – anomalies due to geometrical and irregular shaped bodies, depth rules, calculation of mass.

Earth’s magnetic field – elements, origin and units of measurement, magnetic susceptibility of rocks and measurements, magnetometers, Land, airborne and marine magnetic surveys, corrections, preparation of magnetic maps, upward and downward continuation, magnetic anomalies-geometrical shaped bodies, depth estimates, Image processing concepts in processing of magnetic anomaly maps; Interpretation of processed magnetic anomaly data.

Conduction of electricity through rocks, electrical conductivities of metals, non-metals, rock forming minerals and different rocks, concepts of D.C. resistivity measurement, various electrode configurations for resistivity sounding and profiling, application of filter theory, Type-curves over multi-layered structures, Dar-Zarrouck parameters, reduction of layers, coefficient of anisotropy, interpretation of resistivity field data, equivalence and suppression, self potential and its origin, field measurement, Induced polarization, time and frequency domain IP measurements; interpretation and applications of IP, ground-water exploration, environmental and engineering applications.

Basic concept of EM induction, Origin of electromagnetic field, elliptic polarization, methods of measurement for different source-receiver configuration, components in EM measurements. Skin-depth, interpretation and applications; earth’s natural electromagnetic field, tellurics, magneto-tellurics; geomagnetic depth sounding principles, electromagnetic profiling, methods of measurement, processing of data and interpretation. Geological applications including groundwater, mining and hydrocarbon exploration.

Seismic methods of prospecting; Elastic properties of earth materials; Reflection, refraction and CDP surveys; land and marine seismic sources, generation and propagation of elastic waves, velocity – depth models, geophones, hydrophones, recording instruments (DFS), digital formats, field layouts, seismic noises and noise profile analysis, optimum geophone grouping, noise cancellation by shot and geophone arrays, 2D and 3D seismic data acquisition, processing and interpretation; CDP stacking charts, binning,
filtering, dip-moveout, static and dynamic corrections, Digital seismic data processing, seismic deconvolution and migration methods, attribute analysis, bright and dim spots, seismic stratigraphy, high resolution seismics, VSP, AVO. Reservoir geophysics.

Geophysical signal processing, sampling theorem, aliasing, Nyquist frequency, Fourier series, periodic waveform, Fourier and Hilbert transform, Z-transform and wavelet transform; power spectrum, delta function, auto correlation, cross correlation, convolution, deconvolution, principles of digital filters, windows, poles and zeros.

Principles and techniques of geophysical well logging. SP, resistivity, induction, gamma ray, neutron, density, sonic, temperature, dip meter, caliper, nuclear magnetic, cement bond logging, micro-logs. Quantitative evaluation of formations from well logs; well hydraulics and application of geophysical methods for groundwater study; application of bore hole geophysics in ground water, mineral and oil exploration.

Radioactive methods of prospecting and assaying of minerals (radioactive and non radioactive) deposits, half-life, decay constant, radioactive equilibrium, G M counter, scintillation detector, semiconductor devices, application of radiometric for exploration and radioactive waste disposal.

Geophysical inverse problems; non-uniqueness and stability of solutions; quasi-linear and non-linear methods including Tikhonov’s regularization method, Backus-Gilbert method, simulated annealing, genetic algorithms and artificial neural network.
4.5.13 Instrumentation Engineering (IN)

Engineering Mathematics

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’ series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Transform Theory: Fourier transform, Laplace transform, Z-transform.

Instrumentation Engineering

Electrical and Electronic Measurements: Bridges and potentiometers, measurement of R,L and C. Measurements of voltage, current, power, power factor and energy. A.C & D.C current probes. Extension

4.5.14 Mathematics (MA)

Linear Algebra: Finite dimensional vector spaces; Linear transformations and their matrix representations, rank; systems of linear equations, eigen values and eigen vectors, minimal polynomial, Cayley-Hamilton Theorem, diagonalisation, Hermitian, Skew-Hermitian and unitary matrices; Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, self-adjoint operators.

Complex Analysis: Analytic functions, conformal mappings, bilinear transformations; complex integration: Cauchy’s integral theorem and formula; Liouville’s theorem, maximum modulus principle; Taylor and Laurent’s series; residue theorem and applications for evaluating real integrals.

Real Analysis: Sequences and series of functions, uniform convergence, power series, Fourier series, functions of several variables, maxima, minima; Riemann integration, multiple integrals, line, surface and volume integrals, theorems of Green, Stokes and Gauss; metric spaces, completeness, Weierstrass approximation theorem, compactness; Lebesgue measure, measurable functions; Lebesgue integral, Fatou’s lemma, dominated convergence theorem.

Ordinary Differential Equations: First order ordinary differential equations, existence and uniqueness theorems; systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients; method of Laplace transforms for solving ordinary differential equations, series solutions; Legendre and Bessel functions and their orthogonality.

Algebra: Normal subgroups and homomorphism theorems, automorphisms; Group actions, Sylow’s theorems and their applications; Euclidean domains, Principle ideal domains and unique factorization domains. Prime ideals and maximal ideals in commutative rings; Fields, finite fields.

Functional Analysis: Banach spaces, Hahn-Banach extension theorem, open mapping and closed graph theorems, principle of uniform boundedness; Hilbert spaces, orthonormal bases, Riesz representation theorem, bounded linear operators.

Numerical Analysis: Numerical solution of algebraic and transcendental equations: bisection, secant method, Newton-Raphson method, fixed point iteration; interpolation: error of polynomial interpolation, Lagrange, Newton interpolations; numerical differentiation; numerical integration: Trapezoidal and Simpson rules, Gauss Legendre formula, method of undetermined parameters; least square polynomial approximation; numerical solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition); iterative methods (Jacobi and Gauss-Seidel); matrix eigenvalue problems: power method, numerical solution of ordinary differential equations: initial value problems: Taylor series methods, Euler’s method, Runge-Kutta methods.

Partial Differential Equations: Linear and quasilinear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification; Cauchy, Dirichlet and Neumann problems; solutions of Laplace, wave and diffusion equations in two variables; Fourier series and Fourier transform and Laplace transform methods of solutions for the above equations.

Mechanics: Virtual work, Lagrange’s equations for holonomic systems, Hamiltonian equations.

Topology: Basic concepts of topology, product topology, connectedness, compactness, countability and separation axioms, Urysohn’s Lemma.

Probability and Statistics: Probability space, conditional probability, Bayes theorem, independence, Random variables, joint and conditional distributions, standard probability distributions and their properties, expectation, conditional expectation, moments; Weak and strong law of large numbers, central limit theorem; Sampling distributions, UMVU estimators, maximum likelihood estimators, Testing of
hypotheses, standard parametric tests based on normal, X^2, t, F – distributions; Linear regression; Interval estimation.

Linear programming: Linear programming problem and its formulation, convex sets and their properties, graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP’s, alternate optima; Dual problem and duality theorems, dual simplex method and its application in post optimality analysis; Balanced and unbalanced transportation problems, u -u method for solving transportation problems; Hungarian method for solving assignment problems.

Calculus of Variation and Integral Equations: Variation problems with fixed boundaries; sufficient conditions for extremum, linear integral equations of Fredholm and Volterra type, their iterative solutions.
4.5.15 Mechanical Engineering (ME)

Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

Applied Mechanics And Design

Engineering Mechanics: Free body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion, including impulse and momentum (linear and angular) and energy formulations; impact.

Strength of Materials: Stress and strain, stress-strain relationship and elastic constants, Mohr’s circle for plane stress and plane strain, thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; strain energy methods; thermal stresses.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of slider-crank mechanism; gear trains; flywheels.

Vibrations: Free and forced vibration of single degree of freedom systems; effect of damping; vibration isolation; resonance, critical speeds of shafts.

Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints, shafts, spur gears, rolling and sliding contact bearings, brakes and clutches.

Fluid Mechanics And Thermal Sciences

Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc.

Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept, electrical analogy, unsteady heat conduction, fins; dimensionless parameters in free and forced convective heat transfer, various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary
layer; effect of turbulence; radiative heat transfer, black and grey surfaces, shape factors, network analysis; heat exchanger performance, LMTD and NTU methods.

Thermodynamics: Zeroth, First and Second laws of thermodynamics; thermodynamic system and processes; Carnot cycle; irreversibility and availability; behaviour of ideal and real gases, properties of pure substances, calculation of work and heat in ideal processes; analysis of thermodynamic cycles related to energy conversion.

Applications:

Power Engineering: Steam Tables, Rankine, Brayton cycles with regeneration and reheat.

I.C. Engines: air-standard Otto, Diesel cycles.

Manufacturing And Industrial Engineering

Engineering Materials: Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials.

Metal Casting: Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

Forming: Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

Joining: Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

Machining and Machine Tool Operations: Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures.

Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning.

Inventory Control: Deterministic and probabilistic models; safety stock inventory control systems.

Operations Research: Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.
4.5.16 Mining Engineering (MN)

Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and Eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs –Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Mining Engineering

Mechanics: Equivalent force systems; Equations of equilibrium; Two dimensional frames and trusses; Free body diagrams; Friction forces; Particle kinematics and dynamics.

Mine Development, Geomechanics and Ground Control: Methods of access to deposits; Underground drivages; Drilling methods and machines; Explosives, blasting devices and practices.

Geo-technical properties of rocks; Rock mass classification; Ground control, instrumentation and stress measurement techniques; Theories of rock failure; Ground vibrations; Stress distribution around mine openings; Subsidence; Design of supports in roadways and workings; Rock bursts and coal bumps; Slope stability.

Mining Methods and Machinery: Surface mining: layout, development, loading, transportation and mechanization, continuous surface mining systems; Underground coal mining: bord and pillar systems, room and pillar mining, longwall mining, thick seam mining methods; Underground metal mining : open, supported and caved stoping methods, stope mechanization, ore handling systems, mine filling.

Generation and transmission of mechanical, hydraulic and pneumatic power; Materials handling: haulages, conveyors, face and development machinery, hoisting systems, pumps.

Ventilation, Underground Hazards and Surface Environment: Underground atmosphere; Heat load sources and thermal environment, air cooling; Mechanics of air flow, distribution, natural and mechanical ventilation; Mine fans and their usage; Auxiliary ventilation; Ventilation planning.

Subsurface hazards from fires, explosions, gases, dust and inundation; Rescue apparatus and practices; Safety in mines, accident analysis, noise, mine lighting, occupational health and risk.

Air, water and soil pollution : causes, dispersion, quality standards, reclamation and control.

Surveying, Mine Planning and Systems Engineering: Fundamentals of engineering surveying; Levels and leveling, theodolite, tacheometry, triangulation, contouring, errors and adjustments, correlation;
Underground surveying; Curves; Photogrammetry; Field astronomy; EDM, total station and GPS fundamentals.

Principles of planning: Sampling methods and practices, reserve estimation techniques, basics of geostatistics and quality control, optimization of facility location, cash flow concepts and mine valuation, open pit design; GIS fundamentals.

Work-study; Concepts of reliability, reliability of series and parallel systems.

Linear programming, transportation and assignment problems, queueing, network analysis, basics of simulation.
4.5.17 Metallurgical Engineering (MT)

Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and Eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs – Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Numerical Methods: Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson’s rule; single and multi-step methods for differential equations.

Metallurgical Engineering

Thermodynamics and Rate Processes: Laws of thermodynamics, activity, equilibrium constant, applications to metallurgical systems, solutions, phase equilibria, Ellingham and phase stability diagrams, thermodynamics of surfaces, interfaces and defects, adsorption and segregation; basic kinetic laws, order of reactions, rate constants and rate limiting steps; principles of electro chemistry- single electrode potential, electro-chemical cells and polarizations, aqueous corrosion and protection of metals, oxidation and high temperature corrosion – characterization and control; heat transfer – conduction, convection and heat transfer coefficient relations, radiation, mass transfer – diffusion and Fick’s laws, mass transfer coefficients; momentum transfer – concepts of viscosity, shell balances, Bernoulli’s equation, friction factors.

Extractive Metallurgy: Minerals of economic importance, comminution techniques, size classification, Flotation, gravity and other methods of mineral processing; agglomeration, pyro- hydro- and electrometallurgical processes; material and energy balances; principles and processes for the extraction of non-ferrous metals – aluminium, copper, zinc, lead, magnesium, nickel, titanium and other rare metals; iron and steel making – principles, role structure and properties of slags, metallurgical coke, blast furnace, direct reduction processes, primary and secondary steel making, ladle metallurgy operations including deoxidation, desulphurization, sulphide shape control, inert gas rinsing and vacuum reactors; secondary refining processes including AOD, VAD, VOD, VAR and ESR; ingot and continuous casting; stainless steel making, furnaces and refractories.

Physical Metallurgy: Crystal structure and bonding characteristics of metals, alloys, ceramics and polymers, structure of surfaces and interfaces, nano-crystalline and amorphous structures; solid solutions; solidification; phase transformation and binary phase diagrams; principles of heat treatment of steels, cast iron and aluminum alloys; surface treatments; recovery, recrystallization and grain growth; industrially important ferrous and non-ferrous alloys; elements of X-ray and electron diffraction; principles of scanning and transmission electron microscopy; industrial ceramics, polymers and composites; electronic basis of thermal, optical, electrical and magnetic properties of materials; electronic and opto-electronic materials.
Mechanical Metallurgy: Elasticity, yield criteria and plasticity; defects in crystals; elements of dislocation theory – types of dislocations, slip and twinning, source and multiplication of dislocations, stress fields around dislocations, partial dislocations, dislocation interactions and reactions; strengthening mechanisms; tensile, fatigue and creep behaviour; super-plasticity; fracture – Griffith theory, basic concepts of linear elastic and elasto-plastic fracture mechanics, ductile to brittle transition, fracture toughness; failure analysis; mechanical testing – tension, compression, torsion, hardness, impact, creep, fatigue, fracture toughness and formability.

Manufacturing Processes: Metal casting – patterns and moulds including mould design involving feeding, gating and risering, melting, casting practices in sand casting, permanent mould casting, investment casting and shell moulding, casting defects and repair; hot, warm and cold working of metals, Metal forming – fundamentals of metal forming processes of rolling, forging, extrusion, wire drawing and sheet metal forming, defects in forming; Metal joining – soldering, brazing and welding, common welding processes of shielded metal arc welding, gas metal arc welding, gas tungsten arc welding and submerged arc welding; welding metallurgy, problems associated with welding of steels and aluminium alloys, defects in welded joints; powder metallurgy; NDT using dye-penetrant, ultrasonic, radiography, eddy current, acoustic emission and magnetic particle methods.
4.5.18 Physics (PH)

Mathematical Physics: Linear vector space; matrices; vector calculus; linear differential equations; elements of complex analysis; Laplace transforms, Fourier analysis, elementary ideas about tensors.

Classical Mechanics: Conservation laws; central forces, Kepler problem and planetary motion; collisions and scattering in laboratory and centre of mass frames; mechanics of system of particles; rigid body dynamics; moment of inertia tensor; noninertial frames and pseudo forces; variational principle; Lagrange’s and Hamilton’s formalisms; equation of motion, cyclic coordinates, Poisson bracket; periodic motion, small oscillations, normal modes; special theory of relativity – Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Electromagnetic Theory: Solution of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Biot-Savart’s and Ampere’s laws; Faraday’s law; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization. Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Quantum Mechanics: Physical basis of quantum mechanics; uncertainty principle; Schrodinger equation; one, two and three dimensional potential problems; particle in a box, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Thermodynamics and Statistical Physics: Laws of thermodynamics; macrostates and microstates; phase space; probability ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose-Einstein condensation; first and second order phase transitions, critical point.

Atomic and Molecular Physics: Spectra of one- and many-electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; X-ray spectra; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR and ESR; lasers.

Solid State Physics: Elements of crystallography; diffraction methods for structure determination; bonding in solids; elastic properties of solids; defects in crystals; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids; metals, semiconductors and insulators; transport properties; optical, dielectric and magnetic properties of solids; elements of superconductivity.

Nuclear and Particle Physics: Nuclear radii and charge distributions, nuclear binding energy. Electric and magnetic moments; nuclear models, liquid drop model – semi-empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; Alpha decay, Beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

Electronics: Network analysis; semiconductor devices; Bipolar Junction Transistors, Field Effect Transistors, amplifier and oscillator circuits; operational amplifier, negative feedback circuits, **active filters and oscillators**; rectifier circuits, regulated power supplies; basic digital logic circuits, sequential circuits, flip-flops, counters, registers, A/D and D/A conversion.
4.5.19 Production and Industrial Engineering (PI)

Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

General Engineering

Engineering Materials: Structure and properties of engineering materials and their applications; effect of strain, strain rate and temperature on mechanical properties of metals and alloys; heat treatment of metals and alloys, its influence on mechanical properties.

Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; strength of materials – stress, strain and their relationship, Mohr’s circle, deflection of beams, bending and shear stress, Euler’s theory of columns.

Theory of Machines and Design: Analysis of planar mechanisms, cams and followers; governors and fly wheels; design of elements – failure theories; design of bolted, riveted and welded joints; design of shafts, keys, spur gears, belt drives, brakes and clutches.

Thermal Engineering: Fluid mechanics – fluid statics, Bernoulli’s equation, flow through pipes, equations of continuity and momentum; thermodynamics – zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; air standard cycles; basics of internal combustion engines and steam turbines; heat transfer – fundamentals of conduction, convection and radiation, heat exchangers.

Production Engineering

Metal Casting: Casting processes – types and applications; patterns – types and materials; allowances; moulds and cores – materials, making, and testing; casting techniques of cast iron, steels and nonferrous metals and alloys; solidification; design of casting, gating and risering; casting inspection, defects and remedies.

Metal Forming: Stress-strain relations in elastic and plastic deformation; concept of flow stress, deformation mechanisms; hot and cold working – forging, rolling, extrusion, wire and tube drawing; sheet
metal working processes such as blanking, piercing, bending, deep drawing, coining and embossing; analysis of rolling, forging, extrusion and wire rod drawing; metal working defects.

Metal Joining Processes: Welding processes – manual metal arc, MIG, TIG, plasma arc, submerged arc, electroslag, thermit, resistance, forge, friction, and explosive welding; other joining processes – soldering, brazing, braze welding; inspection of welded joints, defects and remedies; introduction to advanced welding processes – ultrasonic, electron beam, laser beam; thermal cutting.

Machining and Machine Tool Operations: Basic machine tools; machining processes – turning, drilling, boring, milling, shaping, planing, gear cutting, thread production, broaching, grinding, lapping, honing, super finishing; mechanics of machining – geometry of cutting tools, chip formation, cutting forces and power requirements, Merchant’s analysis; selection of machining parameters; tool materials, tool wear and tool life, economics of machining, thermal aspects of machining; principles and applications of nontraditional machining processes – USM, AJM, WJM, EDM and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.

Tool Engineering: Jigs and fixtures – principles, applications, and design; press tools – configuration, design of die and punch; principles of forging die design.

Metrology and Inspection: Limits, fits, and tolerances, interchangeability, selective assembly; linear and angular measurements by mechanical and optical methods, comparators; design of limit gauges; interferometry; measurement of straightness, flatness, roundness, squareness and symmetry; surface finish measurement; inspection of screw threads and gears; alignment testing of machine tools.

Powder Metallurgy: Production of metal powders, compaction and sintering.

Polymers and Composites: Introduction to polymers and composites; plastic processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; molding of composites.

Manufacturing Analysis: Sources of errors in manufacturing; process capability; tolerance analysis in manufacturing and assembly; process planning; parameter selection and comparison of production alternatives; time and cost analysis; manufacturing technologies – strategies and selection.

Computer Integrated Manufacturing: Basic concepts of CAD, CAM, CAPP, cellular manufacturing, NC, CNC, DNC, Robotics, FMS, and CIM.

Industrial Engineering

Product Design and Development: Principles of good product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, concurrent engineering.

Engineering Economy and Costing: Elementary cost accounting and methods of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statements.

Work System Design: Taylor’s scientific management, Gilbreth’s contributions; productivity – concepts and measurements; method study, micro-motion study, principles of motion economy; work measurement – stop watch time study, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration; business process reengineering.

Facility Design: Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems.

Production Planning and Inventory Control: Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master
production scheduling; MRP and MRP-II; order control and flow control; routing, scheduling and priority dispatching; push and pull production systems, concept of JIT manufacturing system; logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministic and probabilistic inventory models, quantity discount; perpetual and periodic inventory control systems.

Operation Research: Linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models, constrained optimization and Lagrange multipliers; simple queuing models; dynamic programming; simulation – manufacturing applications; PERT and CPM, time-cost trade-off, resource leveling.

Quality Management: Quality – concept and costs, quality circles, quality assurance; statistical quality control, acceptance sampling, zero defects, six sigma; total quality management; ISO 9000; design of experiments – Taguchi method.

Reliability and Maintenance: Reliability, availability and maintainability; distribution of failure and repair times; determination of MTBF and MTTR, reliability models; system reliability determination; preventive maintenance and replacement, total productive maintenance – concept and applications.

Management Information System: Value of information; information storage and retrieval system – database and data structures; knowledge based systems.

Intellectual Property System: Definition of intellectual property, importance of IPR; TRIPS and its implications, patent, copyright, industrial design and trademark.
4.5.20 Textile Engineering and Fibre Science (TF)

Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs –Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Numerical Methods: Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson’s rule; single and multi-step methods for differential equations.

Textile Engineering And Fibre Science

Textile Fibres: Classification of textile fibres; Essential requirements of fibre forming polymers; Gross and fine structure of natural fibres like cotton, wool and silk. Introduction to important bastfibres; properties and uses of natural and man-made fibres; physical and chemical methods of fibre and blend identification and blend analysis.

Molecular architecture, amorphous and crystalline phases, glass transition, plasticization, crystallization, melting, factors affecting T_g and T_m; Process of viscose and acetate preparation. Polymerization of nylon-6, nylon-66, poly (ethylene terephthalate), polyacrylonitrile and polypropylene; Melt Spinning processes, characteristic features of PET, polyamide and polypropylene spinning; wet and dry spinning of viscose and acrylic fibres; post spinning operations such as drawing, heat setting, tow-to-top conversion and different texturing methods.

Methods of investigating fibre structure e.g., Density, X-ray diffraction, birefringence, optical and electron microscopy, I.R. absorption, thermal methods (DSC, DMA/TMA, TGA); structure and morphology of man-made fibres, mechanical properties of fibres, moisture sorption in fibres; fibre structure and property correlation.

Yarn manufacture and yarn structure & properties: Principles of opening, cleaning and mixing/blending of fibrous materials, working principle of modern opening and cleaning equipments; the technology of carding, carding of cotton and synthetic fibres; Drafting operation, roller and apron drafting principle, causes of mass irregularity introduced by drafting; roller arrangements in drafting systems; principles of cotton combing, combing cycle, mechanism and function, combing efficiency, lap preparation; recent developments in comber; Roving production, mechanism of bobbin building, roving twist; Principle of ring spinning, forces acting on yarn and traveler; ring & traveler designs; mechanism of cop formation, causes of end breakages; working principle of ring doubler and two for one twister, single and folded yarn twist, properties of double yarns, production of core spun yarn, compact spinning, principle of non conventional methods of yarn production such as rotor spinning, air jet spinning, wrap spinning, twist less spinning and friction spinning.
Yarn contraction, yarn diameter, specific volume & packing coefficient; twist strength relationship in spun yarns; fibre configuration and orientation in yarn; cause of fibre migration and its estimation, irregularity index, properties of ring, rotor and air-jet yarns.

Fabric manufacture and Fabric Structure: Principles of cheese and cone winding processes and machines; random and precision winding; package faults and their remedies; yarn clearers and tensioners; different systems of yarn splicing; features of modern cone winding machines; different types of warping creels; features of modern beam and sectional warping machines; different sizing systems, sizing of spun and filament yarns, modern sizing machines; principles of pirn winding processes and machines; primary and secondary motions of loom, effect of their settings and timings on fabric formation, fabric appearance and weaving performance; dobby and jacquard shedding; mechanics of weft insertion with shuttle; warp and weft stop motions, warp protection, weft replenishment; functional principles of weft insertion systems of shuttle-less weaving machines, principles of multiphase and circular looms.

Principles of weft and warp knitting; basic weft and warp knitted structures. Classification, production and areas of application of nonwoven fabrics. Basic woven fabric constructions and their derivatives; crepe, cord, terry, gauze, leno and double cloth constructions. Peirce’s equations for fabric geometry; elastica model of plain woven fabrics; thickness, cover and maximum sett of woven fabrics.

Textile Testing: Sampling techniques, sample size and sampling errors. Measurement of fibre length, fineness, crimp, strength and reflectance; measurement of cotton fibre maturity and trash content; HVI and AFIS for fibre testing. Measurement of yarn count, twist and hairiness; tensile testing of fibres, yarns and fabrics; evenness testing of slivers, rovings and yarns; testing equipment for measurement test methods of fabric properties like thickness, compressibility, air permeability, drape, crease recovery, tear strength, bursting strength and abrasion resistance. FAST and Kawabata instruments and systems for objective fabric evaluation. Statistical data analysis of experimental results. Correlation analysis, significance tests and analysis of variance; frequency distributions and control charts.

Energy Conservation: Minimum application techniques.

Pollution: Environment pollution during chemical processing of textiles. Treatment of textile effluents.
4.5.21 Engineering Sciences (XE)

4.5.21.1 Section A: Engineering Mathematics (Compulsory)

Calculus: Functions of single variable, limit, continuity and differentiability, Mean value theorems, Indeterminate forms and L’Hospital rule, Maxima and minima, Taylor’s series, Fundamental and mean value-theorems of integral calculus. Evaluation of definite and improper integrals, Beta and Gamma functions, Functions of two variables, limit, continuity, partial derivatives, Euler’s theorem for homogeneous functions, total derivatives, maxima and minima, Lagrange method of multipliers, double and triple integrals and their applications, sequence and series, tests for convergence, power series, Fourier Series, Half range sine and cosine series.

Complex variable: Analytic functions, Cauchy-Riemann equations, Application in solving potential problems, Line integral, Cauchy’s integral theorem and integral formula (without proof), Taylor’s and Laurent’ series, Residue theorem (without proof) and its applications.

Vector Calculus: Gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, Stokes, Gauss and Green’s theorems (without proofs) applications.

Ordinary Differential Equations: First order equation (linear and nonlinear), Second order linear differential equations with variable coefficients, Variation of parameters method, higher order linear differential equations with constant coefficients, Cauchy- Euler’s equations, power series solutions, Legendre polynomials and Bessel’s functions of the first kind and their properties.

Partial Differential Equations: Separation of variables method, Laplace equation, solutions of one dimensional heat and wave equations.

Probability and Statistics: Definitions of probability and simple theorems, conditional probability, Bayes Theorem, random variables, discrete and continuous distributions, Binomial, Poisson, and normal distributions, correlation and linear regression.

Numerical Methods: Solution of a system of linear equations by L-U decomposition, Gauss-Jordan and Gauss-Seidel Methods, Newton’s interpolation formulae, Solution of a polynomial and a transcendental equation by Newton-Raphson method, numerical integration by trapezoidal rule, Simpson’s rule and Gaussian quadrature, numerical solutions of first order differential equation by Euler’s method and 4th order Runge-Kutta method.

4.5.21.2 Section B: Fluid Mechanics

Fluid Properties: Relation between stress and strain rate for Newtonian fluids.

Hydrostatics: Buoyancy, manometry, forces on submerged bodies.

Eulerian and Lagrangian description of fluid motion, concept of local and convective accelerations, steady and unsteady flows, control volume analysis for mass, momentum and energy.

Differential equations of mass and momentum (Euler equation), Bernoulli’s equation and its applications.

Concept of fluid rotation, vorticity, stream function and potential function.
Potential flow: elementary flow fields and principle of superposition, potential flow past a circular cylinder.

Dimensional analysis: Concept of geometric, kinematic and dynamic similarity, importance of non-dimensional numbers.

Fully-developed pipe flow, laminar and turbulent flows, friction factor, Darcy-Weisbach relation.

Qualitative ideas of boundary layer and separation, streamlined and bluff bodies, drag and lift forces.

Basic ideas of flow measurement using venturimeter, pitot-static tube and orifice plate.

4.5.21.3 Section C: Materials Science

Structure: Atomic structure and bonding in materials. Crystal structure of materials, crystal systems, unit cells and space lattices, determination of structures of simple crystals by x-ray diffraction, miller indices of planes and directions, packing geometry in metallic, ionic and covalent solids. Concept of amorphous, single and polycrystalline structures and their effect on properties of materials. Crystal growth techniques. Imperfections in crystalline solids and their role in influencing various properties.

Diffusion: Fick’s laws and application of diffusion in sintering, doping of semiconductors and surface hardening of metals.

Metals and Alloys: Solid solutions, solubility limit, phase rule, binary phase diagrams, intermediate phases, intermetallic compounds, iron-iron carbide phase diagram, heat treatment of steels, cold, hot working of metals, recovery, recrystallization and grain growth. Microstructure, properties and applications of ferrous and non-ferrous alloys.

Ceramics: Structure, properties, processing and applications of traditional and advanced ceramics.

Polymers: Classification, polymerization, structure and properties, additives for polymer products, processing and applications.

Composites: Properties and applications of various composites.

Advanced Materials and Tools: Smart materials, exhibiting ferroelectric, piezoelectric, optoelectric, semiconducting behavior, lasers and optical fibers, photoconductivity and superconductivity, nanomaterials – synthesis, properties and applications, biomaterials, superalloys, shape memory alloys. Materials characterization techniques such as, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, scanning tunneling microscopy, atomic absorption spectroscopy, differential scanning calorimetry.

Mechanical Properties: stress-strain diagrams of metallic, ceramic and polymeric materials, modulus of elasticity, yield strength, tensile strength, toughness, elongation, plastic deformation, viscoelasticity, hardness, impact strength, creep, fatigue, ductile and brittle fracture.

Thermal Properties: Heat capacity, thermal conductivity, thermal expansion of materials.

Electronic Properties: Concept of energy band diagram for materials – conductors, semiconductors and insulators, electrical conductivity – effect of temperature on conductivity, intrinsic and extrinsic semiconductors, dielectric properties.

Optical Properties: Reflection, refraction, absorption and transmission of electromagnetic radiation in solids.
Magnetic Properties: Origin of magnetism in metallic and ceramic materials, paramagnetism, diamagnetism, antiferro magnetism, ferromagnetism, ferrimagnetism, magnetic hysteresis.

Environmental Degradation: Corrosion and oxidation of materials, prevention.

4.5.21.4 Section D: Solid Mechanics

Equivalent force systems; free-body diagrams; equilibrium equations; analysis of determinate trusses and frames; friction; simple relative motion of particles; force as function of position, time and speed; force acting on a body in motion; laws of motion; law of conservation of energy; law of conservation of momentum.

Stresses and strains; principal stresses and strains; Mohr’s circle; generalized Hooke’s Law; thermal strain; theories of failure.

Axial, shear and bending moment diagrams; axial, shear and bending stresses; deflection (for symmetric bending); torsion in circular shafts; thin cylinders; energy methods (Castigliano’s Theorems); Euler buckling.

Free vibration of single degree of freedom systems.

4.5.21.5 Section E: Thermodynamics

Basic Concepts: Continuum, macroscopic approach, thermodynamic system (closed and open or control volume); thermodynamic properties and equilibrium; state of a system, state diagram, path and process; different modes of work; Zeroth law of thermodynamics; concept of temperature; heat.

First Law of Thermodynamics: Energy, enthalpy, specific heats, first law applied to systems and control volumes, steady and unsteady flow analysis.

Second Law of Thermodynamics: Kelvin-Planck and Clausius statements, reversible and irreversible processes, Carnot theorems, thermodynamic temperature scale, Clausius inequality and concept of entropy, principle of increase of entropy; availability and irreversibility.

Properties of Pure Substances: Thermodynamic properties of pure substances in solid, liquid and vapor phases, P-V-T behaviour of simple compressible substances, phase rule, thermodynamic property tables and charts, ideal and real gases, equations of state, compressibility chart.

Thermodynamic Relations: T-ds relations, Maxwell equations, Joule-Thomson coefficient, coefficient of volume expansion, adiabatic and isothermal compressibilities, Clapeyron equation.

Ideal Gas Mixtures: Dalton’s and Amagat’s laws, calculations of properties, air-water vapor mixtures and simple thermodynamic processes involving them.
4.5.21.6 Section F: Polymer Science and Engineering

Chemistry of high polymers: Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness, polymerization methods: addition and condensation; their kinetics, metallocene polymers and other newer techniques of polymerization, copolymerization, monomer reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic copolymerization, block and graft copolymers, techniques for copolymerization-bulk, solution, suspension, emulsion.

Polymer Characterization: Solubility and swelling, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, thermal (DSC, DMTA, TGA), microscopic (optical and electronic) techniques.

Polymer blends and composites: Difference between blends and composites, their significance, choice of polymers for blending, blend miscibility-miscible and immiscible blends, thermodynamics, phase morphology, polymer alloys, polymer eutectics, plastic-plastic, rubber-plastic and rubber-rubber blends, FRP, particulate, long and short fibre reinforced composites.

Polymer Technology: Polymer compounding-need and significance, different compounding ingredients for rubber and plastics, crosslinking and vulcanization, vulcanization kinetics.

Polymer rheology: Flow of Newtonian and non-Newtonian fluids, different flow equations, dependence of shear modulus on temperature, molecular/segmental deformations at different zones and transitions. Measurements of rheological parameters by capillary rotating, parallel plate, cone-plate rheometer. viscoelasticity-creep and stress relaxations, mechanical models, control of rheological characteristics through compounding, rubber curing in parallel plate viscometer, ODR and MDR.

Polymer processing: Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing in two-roll mill, internal mixer.

Polymer testing: Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness, tear, resilience, impact, toughness. Conductivity-thermal and electrical, dielectric constant, dissipation factor, power factor, electric resistance, surface resistivity, volume resistivity, swelling, ageing resistance, environmental stress cracking resistance.

4.5.21.7 Section G: Food Technology

Food Chemistry and Nutrition: Carbohydrates: Structure and functional properties of mono- oligo-polysaccharides including starch, cellulose, pectic substances and dietary fibre; Proteins: Classification and structure of proteins in food; Lipids: Classification and structure of lipids, Rancidity of fats, Polymerization and polymorphism; Pigments: Carotenoids, chlorophylls, anthocyanins, tannins and myoglobin; Food flavours: Terpenes, esters, ketones and quinones; Enzymes: Specificity, Kinetics and inhibition, Coenzymes, Enzymatic and non-enzymatic browning; Nutrition: Balanced diet, Essential amino acids and fatty acids, PER, Water soluble and fat soluble vitamins, Role of minerals in nutrition, Antinutrients, Nutrition deficiency diseases.
Food Microbiology: Characteristics of microorganisms: Morphology, structure and detection of bacteria, yeast and mold in food, Spores and vegetative cells; Microbial growth in food: Intrinsic and extrinsic factors, Growth and death kinetics, serial dilution method for quantification; Food spoilage: Contributing factors, Spoilage bacteria, Microbial spoilage of milk and milk products, meat and meat products; Foodborne disease: Toxins produced by Staphylococcus, Clostridium and Aspergillus; Bacterial pathogens: Salmonella, Bacillus, Listeria, Escherichia coli, Shigella, Campylobacter; Fermented food: Buttermilk, yoghurt, cheese, sausage, alcoholic beverage, vinegar, sauerkraut and soya sauce.

Food Products Technology: Processing principles: Canning, chilling, freezing, dehydration, control of water activity, CA and MA storage, fermentation, hurdle technology, addition of preservatives and food additives, Food packaging, cleaning in place and food laws.; Grain products processing: Milling of rice, wheat, and maize, parboiling of paddy, production of bread, biscuits, extruded products and breakfast cereals, Solvent extraction, clarification and hydrogenation of oil; Fruits, vegetables and plantation products processing: Extraction, clarification concentration and packaging of fruit juice, Production of jam, jelly, marmalade, squash, candies, and pickles, pectin from fruit waste, tea, coffee, chocolate and essential oils from spices; Milk and milk products processing: Pasteurized and sterilized milk, cream, butter, ghee, ice-cream, cheese and milk powder; Animal products processing: Drying and canning of fish, post mortem changes, tenderization and freezing of meat, egg powder.

Food Engineering: Mass and energy balance; Momentum transfer: Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Characteristics of non-Newtonian fluids – generalized viscosity coefficient and Reynolds number, Flow of compressible fluid, Flow measurement, Pumps and compressors; Heat transfer: Heat transfer by conduction, convection, radiation, boiling and condensation, Unsteady state heat transfer in simple geometry, NTU- effectiveness relationship of co-current and counter current double pipe heat exchanger; Mass transfer: Molecular diffusion and Fick’s Law, Steady state mass transfer, Convective mass transfer, Permeability of films and laminates; Mechanical operations: Energy requirement and rate of operations involved in size reduction of solids, high pressure homogenization, filtration, centrifugation, settling, sieving, flow through porous bed, agitation of liquid, solid-solid mixing, and single screw extrusion; Thermal operations: Energy requirement and rate of operations involved in process time evaluation in batch and continuous sterilization, evaporation of liquid foods, hot air drying of solids, spray and freeze-drying, freezing and crystallization; Mass transfer operations: Properties of air-water vapor mixture; Humidification and dehumidification operations.
4.5.22 Life Sciences (XL)

4.5.22.1 Section H: Chemistry (Compulsory)

Atomic structure and periodicity: Planck’s quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, electron affinity, electronegativity, atomic size.

Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle).

s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties.

Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (K_c, K_p and K_a) for homogeneous reactions,

Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications.

Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions.

Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff’s equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics.

Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests

Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity.

4.5.22.2 Section I: Biochemistry

Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters.

DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNA-microarray.

4.5.22.3 **Section J: Botany**

Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic – outline), plant groups, molecular systematics.

Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization.

Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination.

Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, *in vitro* fertilization.

Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N₂ metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senescence and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics.

Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons.

Plant Breeding and Genetic Modification: Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompatibility, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies.

Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria.

Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions.

Ecology and Environment: Ecosystems – types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phyto remediation.
4.5.22.4 Section K: Microbiology

Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases.

Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy.

Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy.

Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth.

Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents.

Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways.

Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi.

Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs.

Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to *E.coli*; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics.

Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants.
4.5.22.5 Section L: Zoology

Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships.

Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation.

Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes.

Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb’s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins.

Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction).

Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation.

Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system.

Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells.

Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology.

Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour.

4.5.22.6 Section M: Food Technology

Food Chemistry and Nutrition: Carbohydrates: Structure and functional properties of mono- oligo-polysaccharides including starch, cellulose, pectic substances and dietary fibre; Proteins: Classification and structure of proteins in food; Lipids: Classification and structure of lipids, Rancidity of fats, Polymerization and polymorphism; Pigments: Carotenoids, chlorophylls, anthocyanins, tannins and myoglobin; Food flavours: Terpenes, esters, ketones and quinones; Enzymes: Specificity, Kinetics and inhibition, Coenzymes, Enzymatic and non-enzymatic browning; Nutrition: Balanced diet, Essential amino acids and fatty acids, PER, Water soluble and fat soluble vitamins, Role of minerals in nutrition, Antinutrients, Nutrition deficiency diseases.

Food Microbiology: Characteristics of microorganisms: Morphology, structure and detection of bacteria, yeast and mold in food, Spores and vegetative cells; Microbial growth in food: Intrinsic and extrinsic factors, Growth and death kinetics, serial dilution method for quantification; Food spoilage: Contributing factors, Spoilage bacteria, Microbial spoilage of milk and milk products, meat and meat products; Foodborne disease: Toxins produced by Staphylococcus, Clostridium and Aspergillus; Bacterial pathogens: Salmonella, Bacillus, Listeria, Escherichia coli, Shigella, Campylobacter; Fermented food: Buttermilk, yoghurt, cheese, sausage, alcoholic beverage, vinegar, sauerkraut and soya sauce.
Food Products Technology: Processing principles: Canning, chilling, freezing, dehydration, control of water activity, CA and MA storage, fermentation, hurdle technology, addition of preservatives and food additives, Food packaging, cleaning in place and food laws.; Grain products processing: Milling of rice, wheat, and maize, parboiling of paddy, production of bread, biscuits, extruded products and breakfast cereals, Solvent extraction, refining and hydrogenation of oil; Fruits, vegetables and plantation products processing: Extraction, clarification concentration and packaging of fruit juice, Production of jam, jelly, marmalade, squash, candies, and pickles, pectin from fruit waste, tea, coffee, chocolate and essential oils from spices; Milk and milk products processing: Pasteurized and sterilized milk, cream, butter, ghee, ice-cream, cheese and milk powder; Animal products processing: Drying and canning of fish, post mortem changes, tenderization and freezing of meat, egg powder.

Food Engineering: Mass and energy balance; Momentum transfer: Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Characteristics of non-Newtonian fluids – generalized viscosity coefficient and Reynolds number, Flow of compressible fluid, Flow measurement, Pumps and compressors; Heat transfer: Heat transfer by conduction, convection, radiation, boiling and condensation, Unsteady state heat transfer in simple geometry, NTU- effectiveness relationship of co-current and counter current double pipe heat exchanger; Mass transfer: Molecular diffusion and Fick’s Law, Steady state mass transfer, Convective mass transfer, Permeability of films and laminates; Mechanical operations: Energy requirement and rate of operations involved in size reduction of solids, high pressure homogenization, filtration, centrifugation, settling, sieving, flow through porous bed, agitation of liquid, solid-solid mixing, and single screw extrusion; Thermal operations: Energy requirement and rate of operations involved in process time evaluation in batch and continuous sterilization, evaporation of liquid foods, hot air drying of solids, spray and freeze-drying, freezing and crystallization; Mass transfer operations: Properties of air-water vapor mixture; Humidification and dehumidification operations.
5 Post-Exam Related Information

5.1 GATE Score

After the evaluation of the answers, the raw marks obtained by a candidate will be converted to a normalized GATE Score.

From 2013, the GATE score will be computed by a new formula.

The GATE Score of a candidate is computed from:

\[S = S_q + (S_t - S_q) \frac{M - M_q}{\overline{M_t} - M_q}, \]

where,

\(S \) is GATE Score (normalised) of a candidate,
\(M \) is Marks obtained by a candidate in a paper,
\(M_q \) is Qualifying Marks for general category candidates in the paper,
\(\overline{M_t} \) is Average Marks of top 0.1% or 10 (which ever is higher) of candidates in the paper,
\(S_t \) is GATE Score assigned to \(\overline{M_t} \) (around 900), and
\(S_q \) is GATE Score assigned to \(M_q \) (around 300).

\(M_q \) is usually 25 marks (out of 100) or \(\mu + \sigma \), which ever is higher. Here \(\mu \) is the mean of marks in a paper and \(\sigma \) is the standard deviation.

After the declaration of the results, a GATE Scorecard will be issued to all the candidates of a paper whose marks are equal to or above the qualifying marks of SC/ST/PD candidates in that paper. There is no provision for the issue of Additional GATE scorecard.

The GATE 2013 Committee with the NCB has the authority to decide the qualifying mark for each GATE paper. In case any claim or dispute arises in respect of GATE 2013, it is hereby made absolutely clear that the Courts and Tribunals in Mumbai and Mumbai alone shall have the exclusive jurisdiction to entertain and settle any such dispute or claim.

5.2 GATE 2013 Results

GATE 2013 results will be announced on March 15, 2013 at 10:00 hrs and will be available on the GATE Online Applicant Website.

GATE 2013 score is valid for TWO YEARS from the date of announcement of the results.

GATE 2013 results may be made available on payment basis to interested organizations (educational institutions, R & D laboratories, industries, etc.) in India and abroad based on a Memorandum of Understanding (MOU) between IIT Bombay and the requesting organization. Details in this regard can be obtained from the Chairman, GATE, IIT Bombay.
5.3 *GATE Score Card*

Scorecard will be issued (mailed to the correspondence address given in the application) to all the candidates for a paper whose marks are equal to or above the qualifying marks of SC/ST/PD candidates in that paper. **There is no provision for issue of additional GATE scorecards.**

The GATE 2013 Committee with the NCB’s approval has the authority to decide the qualifying score for each GATE paper. In case any claim or dispute arises in respect of GATE 2013, it is hereby made absolutely clear that the Courts and Tribunals in Mumbai and Mumbai alone shall have the exclusive jurisdiction to entertain and settle any such dispute or claim.
6 Frequently Asked Questions (FAQ)

6.1 Application Process

1. **How do I apply ONLINE?** Go to the link How to apply? On website (www.gate.iitb.ac.in/gate2013), read the instructions and apply from the link provided in the main page.

2. **Can I use one email address to fill multiple application forms?** NO, one email address can be used for only one application form.

3. **Why should I choose two examination cities?** Generally, you will be allotted a centre in the examination city of your first choice. Only in cases where it becomes difficult to accommodate you in the examination city of your first choice, your second choice will be considered.

4. **My power/internet connection failed during application process, what do I do?** If you have clicked on “Save” during application process, the data you entered up to that time has been stored online. Simply login back to the GATE application website and continue the application process.

5. **You are asking only the SC/ST/PD candidates to enclose the category certificate. What about the OBC (non-creamy layer) candidates? Do they have to enclose the category certificate too?** NO. OBC (non-creamy layer) candidates do not have to enclose the category certificate since their application fee is same as that of the general category candidates. However, in the application, you can indicate the category to which you belong to. You need to produce the category certificate only to the admitting institute at the time of admission.

6. **How do I make the fee payment for GATE 2013 examination?** You can make the payment during the ONLINE application process by choosing one of the following options:

 1. *Online Payment: Netbanking through the payment gateway.*

 2. *Challan Payment: Payment by cash at any branch of Canara Bank or State Bank of India.*

7. **I want to pay online by my credit card, but I don’t see that option!** You can only use internet banking (netbanking) facilities for online payment. Credit cards will not be accepted.

8. **If I want the Online Payment (Netbanking) option, how should I complete the application process?** After filling all the fields in the ONLINE application form, choose Online Payment option and proceed for payment by following the instructions.

 1. Your browser screen will re-directed to the bank you choose. Login with your Internet banking credentials and confirm the payment.

 2. After confirming the payment, you will be re-directed back to GATE application website.
3. At the end of this process, a PDF file will be generated with the following pages:

1. Page 1: Instructions and Address slip (of where you need to send the hard copy) to be pasted on an A4 sized envelope

2. Page 2-3: Two copies (one for you one to be sent to GATE office) of application form with bottom part showing certificate to be signed by principal. One copy for the candidate and another to be sent to GATE office.

4. Take a print out of the entire file and follow instructions in link How to apply? to complete the application process.

9. **My power/internet connection failed during online payment. What do I do?** When you can get back online, first check the status of your payment on the GATE application website.

 1. If the payment was received by GATE, you can continue the process of printing the application form.

 2. If the payment was not received by GATE, you have to start with the payment step again (choice of Online or Chalan), to complete payment.

10. **My netbanking account has been debited (money taken out) more than once. How do I get the money back?** This can happen if your bank account was used more than once or you pressed refresh or back/forward button of your internet browser. Please check your bank account after 48 hours. Any unaccounted or excess money that was received on behalf of GATE 2013 from this account will automatically be returned back (credited) to the same bank account.

11. **My bank account has been debited (money taken out), but GATE Application website says that the payment has not been received. What do I do?** This happened because of some failure in internet transactions (including failure of internet connection at your end). As soon as possible, you MUST initiate a fresh payment process on the GATE application website, and make the payment again. The money that was debited (taken out) from your account the first time, will be credited (put back) to your bank account within 48 hours. You will be charged only once. Any excess/unaccounted debits will be returned to you.

12. **If I want the Bank Challan option, how should I complete the application process?** After filling in all the fields in the ONLINE application form, choose Bank Challan option and proceed for payment by following the instructions.

 1. At the end of this process, a PDF file will be generated with the following pages:

 1. Page 1: Instructions and Address slip where you need to send hard copy.

 2. Page 2-3: Two copies (one for you one to be sent to GATE office) of application form with bottom part showing certificate to be signed by principal.

 3. Page 4: page for candidates who select “bank challan” way of payment (as against the net banking). This page will contain 3 copies of challan.
2. Take a print out of the entire file and follow instructions in link *How to apply?* on website www.gate.iitb.ac.in/gate2013 to complete the application process.

13. **Do I have to send the printout of the application form?** YES. At the end of the Application process a PDF file of the application is generated. You have to affix your photograph, signature and enclose other documents along with this print out and send to the concerned GATE office. This is REQUIRED in addition to the uploading of the image files.

14. **I have attached the documents online, do I have to send the hard copy as well?** No, apart from the application, you do not have to provide hard copies of documents you have submitted online.

15. **Should I attest the photograph for application form?** NO. Photographs must not be attested application form or uploading. You must bring a valid photo ID card to the examination center.

16. **When and how will I know the status of my application?** You can check the status of your application by logging in at the applicant website.

17. **After completing the ONLINE application process and generating a PDF file, will I be able to change my application data?** NO. After completing all the steps upto PDF application form generation in ONLINE application process, you can only download the application form and cannot modify the data. Hence you need to be very careful while entering the data. You may also save a partially filled application and login in again at a later point in time to complete and submit the application.

18. **I have missed to take a print of my ONLINE application at the end of my application process. How will I get access to it?** You can login using Login id (email) and password you had set up and take a printout.

6.2 Admit card

1. **When will I receive my admit card?** Admit card can only be downloaded from the zonal GATE websites from 5th December 2012. Sending Admit cards by post has been discontinued.

2. **Is the Admit card alone sufficient to gain entry to the exam?** No. Bring the admit card at the test center along with at least one original (not photocopied / scanned copy) and valid (not expired) photo identification. ONLY one of the following photo identifications is permitted: Driving license, Passport, PAN Card, Voter ID, College ID, Employee identification card, or a notarized Affidavit with Photo, Signature, Date of Birth and Residential Address. Photocopies of the original identification document are not acceptable. Candidates will not be permitted to take the test if original and valid photo identification is not presented.
6.3 GATE 2013 Exam

1. For how many GATE papers can I apply? A candidate can apply for only ONE of the 21 papers listed in the GATE INFORMATION BROCHURE or GATE website. The choice of the appropriate paper is the responsibility of the candidate. Some guidelines in this respect are suggested below.

 1. The candidate is expected to appear in a paper appropriate to the discipline of his/her qualifying degree.

 2. The candidate is, however, free to choose any paper according to his/her admission plan, keeping in mind the eligibility criteria of the institutions in which he/she wishes to seek admission.

2. After submission of application, am I permitted to change my GATE Examination Paper and Examination City? Requests for change of GATE Examination paper after the submission of Application Form will not be considered. However, requests for change of examination city will be accepted till November 20, 2012 with a fee of ₹400/- to be paid in the form of a demand draft in favour of “Chairman GATE 2013”, payable at Mumbai. Please send this DD to the Zonal office where you sent the application form.

3. Will I be provided with any white paper for rough work and calculations during the test? For OFFLINE Examination, the question paper itself contains some blank sheets on which you can do the rough work. Rough work cannot be done on any other paper/sheet as no additional paper will be provided during the test. For ONLINE Examination, a notepad provided to the candidate can be used to do the rough work.

4. Am I allowed to leave the examination hall during the test? NO. Candidates will NOT be allowed to leave the examination hall for any reason during the test. For OFFLINE exam, candidates are allowed to leave the hall only after the Optical Response Sheet (ORS) from all the candidates in the examination hall have been collected and accounted for. For ONLINE examination, candidates are allowed to leave the lab only after the closure of the test at the scheduled end of examination in a session.

5. What items are not permitted to be brought with me inside the examination venue? Electronic diary, mobile phone, and any such electronic gadgets, blank papers, clip boards and log-tables will not be allowed in the examination venue.

6. Can I use a calculator during the exam? Yes. You are permitted to use a scientific calculator without data connectivity. If you bring any item that is not permissible inside the examination venue, you will have to keep it at the test center at your own risk.

7. Will there be any arrangement at the test center for the safe keeping of my personal items such as my mobile phone? No such arrangements will be possible at the test center.

8. Is the use of pencils to darken the bubbles in the answer sheet permitted? NO. The use of pencils to darken the bubbles in the answer sheet has been discontinued. Candidates should use only black ink ballpoint pen for darkening of the bubbles in the answer sheet. Since bubbles darkened by the black ink ballpoint pen cannot be erased, candidates should darken the bubbles in the answer sheet very carefully.
7 Zonal Contacts

GATE is jointly administered and conducted by the Indian Institute of Science and seven Indian Institutes of Technology. Each of the institutes administers a zone and caters to examination cities nearby to the institute. Applicants are assigned a zone at the time of application, based on the first city of choice. Applicants must note this zone number for contact purposes.

From this year candidates must use the GATE online applicant interface to contact Zonal GATE offices, which seek to will provide quicker and clearer information through it. The following methods may be used only if someone is unable to reach the GATE office by the online grievance redressal.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Contact Address</th>
<th>Phone Number</th>
<th>FAX</th>
<th>EMail Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chairman, GATE Indian Institute of Science Bengaluru 560 012</td>
<td>080-2293 2392</td>
<td>080-2360 1227</td>
<td>gate[at]gate.iisc.ernet.in</td>
</tr>
<tr>
<td>2</td>
<td>Chairman, GATE Indian Institute of Technology Bombay, Powai, Mumbai 400 076</td>
<td>022-2576 7068</td>
<td>022-2572 3706</td>
<td>gateoffice[at]iitb.ac.in</td>
</tr>
<tr>
<td>3</td>
<td>Chairman, GATE Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016</td>
<td>011-2659 1749</td>
<td>011-2658 1579</td>
<td>gateoffice[at]admin.iitd.ernet.in</td>
</tr>
<tr>
<td>4</td>
<td>Chairman, GATE Indian Institute of Technology Guwahati, Guwahati 781 039</td>
<td>0361-258 2751</td>
<td>0361-258 2755</td>
<td>gate[at]iitg.ernet.in</td>
</tr>
<tr>
<td>5</td>
<td>Chairman, GATE Indian Institute of Technology Kanpur, Kanpur 208 016</td>
<td>0512-259 7412</td>
<td>0512-259 0932</td>
<td>gate[at]iitk.ac.in</td>
</tr>
<tr>
<td>6</td>
<td>Chairman, GATE Indian Institute of Technology Kharagpur, Kharagpur 721 302</td>
<td>03222-282091</td>
<td>03222-278243</td>
<td>gate[at]adm.iitkgp.ernet.in</td>
</tr>
<tr>
<td>7</td>
<td>Chairman, GATE Indian Institute of Technology Madras, Chennai 600 036</td>
<td>044-2257 8200</td>
<td>044-2257 8204</td>
<td>gate[at]iitm.ac.in</td>
</tr>
<tr>
<td>8</td>
<td>Chairman, GATE Indian Institute of Technology Roorkee, Roorkee 247 667</td>
<td>01332-284531</td>
<td>01332-285707</td>
<td>gate[at]iitr.ernet.in</td>
</tr>
</tbody>
</table>
8 Appendix A

8.1 Authorities Empowered to Issue certificates (SC/ST)

- District Magistrate/ Additional District Magistrate/ Collector/ Deputy Collector/ Deputy Commissioner/ Additional Deputy Commissioner/ 1st Class Stipendiary Magistrate/ City Magistrate/ Sub-Divisional Magistrate/ Taluk Magistrate/ Executive Magistrate/ Extra Assistant Commissioner.

- Chief Presidency Magistrate/ Additional Chief Presidency Magistrate/ Presidency Magistrate

- Revenue Officer not below the rank of Tashildar

- Sub-Divisional Officer of the area where the Candidate and/or her/his family normally resides

- Administrator/ Secretary to Administrator/ Development Officer (Lakshadweep Islands)

Certificate issued by any other official will not be accepted.

8.2 PD Category:

In order to avail concession under PD category, the candidates should attach a recently obtained proper PD certificate, which shall be required to be submitted to the admitting institution at the time of admission. The onus of verifying PD certificate lies with the admitting institute. The GATE committee will not be responsible for any incorrect declaration of the PD status of candidates.
9 Appendix B: Qualifying Disciplines

These are some of the common qualifying disciplines for the eligibility degree

<table>
<thead>
<tr>
<th>Discipline: Engineering/Technology</th>
<th>Renewable Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Engg.</td>
<td>Rubber Technology</td>
</tr>
<tr>
<td>Aerospace Engg.</td>
<td>Textile Engineering & Fibre Science</td>
</tr>
<tr>
<td>Agricultural Engg.</td>
<td>All other disciplines in Engg./Technology</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>Discipline: Sciences</td>
</tr>
<tr>
<td>Automobile Engg.</td>
<td>Agricultural Science</td>
</tr>
<tr>
<td>Biochemical Engg.</td>
<td>Applied Electronics</td>
</tr>
<tr>
<td>Biomedical Engg.</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Ceramic & Glass Technology</td>
<td>Bio-Sciences</td>
</tr>
<tr>
<td>Chemical Engg.</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Chemical Technology</td>
<td>Computer Applications</td>
</tr>
<tr>
<td>Civil/Civil & Environmental/Structural Engg./Construction Engg.</td>
<td>Earth Sciences</td>
</tr>
<tr>
<td>Computer Engg./Computer Science & Engg./Technology</td>
<td>Electronics</td>
</tr>
<tr>
<td>Control and Instrumentation</td>
<td>Engineering Physics</td>
</tr>
<tr>
<td>Electrical Engg./ Electrical and Electronics Engg./Power Engineering</td>
<td>Geology/Geophysics</td>
</tr>
<tr>
<td>Electro-Chemical Engg.</td>
<td>Industrial Chemistry</td>
</tr>
<tr>
<td>Electronics & Comm./Electronics Engg./Comm. Engg. /Telecommunication Engg.</td>
<td>Life Science/Veterinary/Animal Science</td>
</tr>
<tr>
<td>Energy Engg.</td>
<td>Life Sciences</td>
</tr>
<tr>
<td>Environmental Engg.</td>
<td>Life Sciences (Botany)</td>
</tr>
<tr>
<td>Food Technology/Food Processing Engg.</td>
<td>Materials Science</td>
</tr>
<tr>
<td>Industrial Engg.</td>
<td>Mathematics/Applied Mathematics</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>Microbiology</td>
</tr>
<tr>
<td>Information Science/Information Technology</td>
<td>Nano Science & Technology</td>
</tr>
<tr>
<td>Instrumentation/ Electronics/Control</td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>Instrumentation & Process Control</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Manufacturing Engg.</td>
<td>Pharmaceutical Sciences/Pharmacy</td>
</tr>
<tr>
<td>Material Science and Engineering</td>
<td>Physics</td>
</tr>
<tr>
<td>Mechanical Engg.</td>
<td>Radio Physics</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>Radio Physics & Electronics</td>
</tr>
<tr>
<td>Medical Instrumentation</td>
<td>Statistics</td>
</tr>
<tr>
<td>Metallurgical Engg/ Industrial Metallurgy</td>
<td>Textile Chemistry</td>
</tr>
<tr>
<td>Mineral Engg./Mineral Dressing</td>
<td>All other disciplines in Sciences</td>
</tr>
<tr>
<td>Mining Engg./Technology, Mining & Machinery</td>
<td></td>
</tr>
<tr>
<td>Naval Architecture/Marine Engg.</td>
<td></td>
</tr>
<tr>
<td>Oil Technology</td>
<td></td>
</tr>
<tr>
<td>Paint Technology</td>
<td></td>
</tr>
<tr>
<td>Petro-Chemical Engg.</td>
<td></td>
</tr>
<tr>
<td>Petroleum Engg./Technology</td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Plastic Technology</td>
<td></td>
</tr>
<tr>
<td>Polymer Technology/Science</td>
<td></td>
</tr>
<tr>
<td>Production & Industrial Engg.</td>
<td></td>
</tr>
</tbody>
</table>